Main Article Content

Abstract

Soil salinization is one of the foremost factors affecting global agricultural productivity. More than half billion hectares of agricultural land are unutilized due to excess saline condition. Hence, there is a great urge in exploring scientific interventions in restoring the saline affected areas and promote high productive and effective land utilization in order to respond to today's global concerns of food security. While a sound drainage system is required as a permanent solution to the soil salinity problem in order to regulate the water table, this option cannot be used in larger area with high energy and cost-intensity.Phytoremediation, a plant – based approach is one of the promising technology in enhanced dissolution of Ca levels along with sodium removal through cultivating suitable halophytes.During the process, the proliferation of roots, aggregate stability, hydraulic conductivity and nutrient availability increases. These improvement in soil quality enables the growth of less tolerant crops, enhances the overall ecosystem and climatic conditions by increasing carbon sequestration. In this perspective, the chapter focuses on halophytes, its kinds, the effects of salinity on soil physical, chemical, biological health, the influence of halophytes in stress management and on the function of halophytes in carbon sequestration.

Keywords

Carbon sequestration, Climate change, Halophytes, Salinity, Soil properties, Sustainability

Article Details

How to Cite
Kathirvel Suganya, Ramesh Poornima, Selvaraj, P. S., -, E. P., & P Kalaiselvi. (2021). The Potential of halophytes in managing soil salinity and mitigating climate change for environmental sustainability . Environment Conservation Journal, 22(3), 103–110. https://doi.org/10.36953/ECJ.2021.22312

References

  1. Agarwal, S., & Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19, 149-161. DOI: https://doi.org/10.1590/S1677-04202007000200007
  2. Ahmad, P., & Prasad, M. N. V. (Eds.). (2011). Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-1-4614-0815-4
  3. Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia journal of Sciences, 9(1), 43-50.
  4. Aly-Salama, K. H., & Al-Mutawa, M. M. (2009). Glutathione-triggered mitigation in salt-induced alterations in plasmalemma of onion epidermal cells. International Journal of Agriculture and Biology (Pakistan).
  5. Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216. DOI: https://doi.org/10.1016/j.envexpbot.2005.12.006
  6. Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45(4), 405-413. DOI: https://doi.org/10.1007/s00374-008-0344-9
  7. Cao, T. T., Chen, H. H., Dong, Z., Xu, Y. W., Zhao, P., Guo, W., ... & Lu, R. (2017). Stachydrine protects against pressure overload-induced cardiac hypertrophy by suppressing autophagy. Cellular Physiology and Biochemistry, 42(1), 103-114. DOI: https://doi.org/10.1159/000477119
  8. Cresswell, H. P., & Kirkegaard, J. A. (1995). Subsoil amelioration by plant-roots-the process and the evidence. Soil Research, 33(2), 221-239. DOI: https://doi.org/10.1071/SR9950221
  9. Cushman, J. C. (2001). Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant physiology, 127(4), 1439-1448. DOI: https://doi.org/10.1104/pp.010818
  10. da Silva, E. C., Nogueira, R. J. M. C., de Araújo, F. P., de Melo, N. F., & de Azevedo Neto, A. D. (2008). Physiological responses to salt stress in young umbu plants. Environmental and Experimental Botany, 63(1-3), 147-157. DOI: https://doi.org/10.1016/j.envexpbot.2007.11.010
  11. Dassanayake, M., & Larkin, J. C. (2017). Making plants break a sweat: the structure, function, and evolution of plant salt glands. Frontiers in Plant Science, 8, 406. DOI: https://doi.org/10.3389/fpls.2017.00724
  12. Dietz, K. J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S. S., Harris, G. C., & Golldack, D. (2001). Significance of the V?type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of experimental botany, 52(363), 1969-1980. DOI: https://doi.org/10.1093/jexbot/52.363.1969
  13. Flowers, T. J., &Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 945-963. DOI: https://doi.org/10.1111/j.1469-8137.2008.02531.x
  14. Ghanem, A. E. M. F., Mohamed, E., Kasem, A. M., & El-Ghamery, A. A. (2021). Differential Salt Tolerance Strategies in Three Halophytes from the Same Ecological Habitat: Augmentation of Antioxidant Enzymes and Compounds. Plants, 10(6), 1100. DOI: https://doi.org/10.3390/plants10061100
  15. Glenn, E. P., Brown, J. J., &Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical reviews in plant sciences, 18(2), 227-255. DOI: https://doi.org/10.1080/07352689991309207
  16. Glenn, E. P., Hodges, C. N., Lieth, H., Pielke, R., &Pitelka, L. (1992). Climate: growing halophytes to remove carbon from the atmosphere. Environment: Science and Policy for Sustainable Development, 34(3), 40-43. DOI: https://doi.org/10.1080/00139157.1992.9931438
  17. Guo, Y., Qiu, Q. S., Quintero, F. J., Pardo, J. M., Ohta, M., Zhang, C., ... & Zhu, J. K. (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. The Plant Cell, 16(2), 435-449. DOI: https://doi.org/10.1105/tpc.019174
  18. Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014. DOI: https://doi.org/10.1155/2014/701596
  19. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., &Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1), 463-499. DOI: https://doi.org/10.1146/annurev.arplant.51.1.463
  20. Helyar, K. R., & Porter, W. M. (1989). Soil acidification, its measurement and the processes involved. Soil acidity and plant growth, 61102. DOI: https://doi.org/10.1016/B978-0-12-590655-5.50007-4
  21. Hu, Y., &Schmidhalter, U. (2004). Limitation of salt stress to plant growth. HOCK, E. Plant toxicology, 4, 191-224. DOI: https://doi.org/10.1201/9780203023884.ch5
  22. Jha, Y., & Subramanian, R. B. (2014). PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, 20(2), 201-207. DOI: https://doi.org/10.1007/s12298-014-0224-8
  23. Kavitha, K., George, S., Venkataraman, G., &Parida, A. (2010). A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie, 92(10), 1321-1329. DOI: https://doi.org/10.1016/j.biochi.2010.06.009
  24. Khan, N. A., Khan, M. I. R., Asgher, M., Fatma, M., Masood, A., &Syeed, S. (2014). Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant BiochemPhysiol, 2(120), 2.
  25. Koprivova, A., North, K. A., & Kopriva, S. (2008). Complex signaling network in regulation of adenosine 5?-phosphosulfate reductase by salt stress in Arabidopsis roots. Plant Physiology, 146(3), 1408-1420. DOI: https://doi.org/10.1104/pp.107.113175
  26. Li, Y., Liu, Y., Fu, Y., Wei, T., Le Guyader, L., Gao, G., ... & Chen, C. (2012). The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials, 33(2), 402-411. DOI: https://doi.org/10.1016/j.biomaterials.2011.09.091
  27. Liu, J., Ishitani, M., Halfter, U., Kim, C. S., & Zhu, J. K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the national academy of sciences, 97(7), 3730-3734. DOI: https://doi.org/10.1073/pnas.97.7.3730
  28. Lokhande, V. H., &Suprasanna, P. (2012). Prospects of halophytes in understanding and managing abiotic stress tolerance. In Environmental adaptations and stress tolerance of plants in the era of climate change (pp. 29-56). Springer, New York, NY. DOI: https://doi.org/10.1007/978-1-4614-0815-4_2
  29. Mahajan, S., &Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158. DOI: https://doi.org/10.1016/j.abb.2005.10.018
  30. Meng, Q., Shi, S., Liang, C., Liang, D., Hua, J., Zhang, B., ... & Yu, X. (2018). Abrogation of glutathione peroxidase-1 drives EMT and chemoresistance in pancreatic cancer by activating ROS-mediated Akt/GSK3?/Snail signaling. Oncogene, 37(44), 5843-5857. DOI: https://doi.org/10.1038/s41388-018-0392-z
  31. Mishra, A., & Tanna, B. (2017). Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in plant Science, 8, 829. DOI: https://doi.org/10.3389/fpls.2017.00829
  32. Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663. DOI: https://doi.org/10.1111/j.1469-8137.2005.01487.x
  33. Patel, B. B., & Dave, R. S. (2011). Studies on infiltration of saline-alkali soils of several parts of Mehsana and Patan districts of North Gujarat. Journal of Applied Technology in Environmental Sanitation, 1(1), 87-92.
  34. Qi, Y. C., Wang, F. F., Zhang, H., & Liu, W. Q. (2010). Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta physiologiae plantarum, 32(2), 263-269. DOI: https://doi.org/10.1007/s11738-009-0403-3
  35. Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W. Y., Ali, Z., ... & Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. DOI: https://doi.org/10.1073/pnas.1018921108
  36. Romero-Aranda, R., Soria, T., &Cuartero, J. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant science, 160(2), 265-272. DOI: https://doi.org/10.1016/S0168-9452(00)00388-5
  37. Ruiz, J., &Blumwald, E. (2002). Salinity-induced glutathione synthesis in Brassica napus. Planta, 214(6), 965-969. DOI: https://doi.org/10.1007/s00425-002-0748-y
  38. Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the national academy of sciences, 97(12), 6896-6901. DOI: https://doi.org/10.1073/pnas.120170197
  39. Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J. K. (2002). The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell, 14(2), 465-477. DOI: https://doi.org/10.1105/tpc.010371
  40. Stuart, J. R., Tester, M., Gaxiola, R. A., & Flowers, T. J. (2012). Plants of saline environments. Access science.
  41. Van Zelm, E., Zhang, Y., &Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. DOI: https://doi.org/10.1146/annurev-arplant-050718-100005
  42. Walter, H. (1961). Salinity problems in the acid zones. The adaptations of plants to saline soils. Arid Zone Research, 14, 65-68.
  43. Yensen, N. P. (2008). Halophyte uses for the twenty-first century. In Ecophysiology of high salinity tolerant plants (pp. 367-396). Springer, Dordrecht. DOI: https://doi.org/10.1007/1-4020-4018-0_23
  44. Yuan, Z., Druzhinina, I. S., Labbé, J., Redman, R., Qin, Y., Rodriguez, R., & Lin, F. (2016). Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Scientific reports, 6(1), 1-13. DOI: https://doi.org/10.1038/srep32467
  45. Yunusa, I. A., & Newton, P. J. (2003). Plants for amelioration of subsoil constraints and hydrological control: the primer-plant concept. Plant and Soil, 257(2), 261-281. DOI: https://doi.org/10.1023/A:1027381329549
  46. Zheng, X., Duan, Y., Dong, H., & Zhang, J. (2017). Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeusvannamei under normal condition and stress of acute low salinity. Fish & shellfish immunology, 62, 195-201. DOI: https://doi.org/10.1016/j.fsi.2017.01.015