Main Article Content


Lignocellulosic biomass (like rice straw) provides an alternative for depleting non-renewable energy sources through its value-added utilization (like production of biofuels and nanocellulose) owing to its abundance, renewability, polymer presence and environmental friendliness. Prior to its utilization, any lignocellulosic biomass is subjected to a time-consuming delignification process for lignin free biomass recovery. The present study aims to reduce the time of delignification of rice straw along with enhancing the delignification percentage of biomass by use of microwave assisted sodium chlorite method. The experiments were done at two microwave power levels (640, 800 W), three bleaching solution concentrations (0.4, 1.7, 3.0 %) and three microwave treatment times (4, 8, 12 min). The delignification percentage of the rice straw for the whole experimentation varied from 24.7 to 90.12%. The results revealed that the time of delignification was greatly reduced (12 min) with a very high delignification (90.12%) percentage. The morphology of the delignified samples also revealed the deconstruction of the lignin structure. The improved method can thus be applied for the delignification of other biomasses as well for quick and effective delignification


Delignification Percentage Bleaching Lignocellulosic biomass Microwave assisted chemical treatment Rice straw Sodium Chlorite

Article Details

Author Biographies

Umesh Chand Lohani, Department of Post Harvest Process and Food Engineering, GBPUAT, Pantnagar

Junior Research Officer

Anil Kumar, Department of Food Science and Technology, GBPUAT, Pantnagar

Junior Research Officer

Sheeba Malik, Department of Post Harvest Process and Food Engineering, GBPUAT, Pantnagar

Research Scholar

How to Cite
Bhat, M. I., Shahi, N. C., Lohani, U. C., Kumar, A., & Malik, S. . (2021). Influence of microwave-assisted chemical treatment on delignification of rice straw biomass . Environment Conservation Journal, 22(1&2), 87–95.


  1. Akhtar, J., Teo, C. L., Lai, L. W., Hassan, N., Idris, A. and Aziz, R. A. 2014. Factors Affecting Delignification of Oil Palm Empty Fruit Bunch by Microwave-assisted Dilute Acid/Alkali Pretreatment. BioResources. 2014, 10(1),
  2. Avelino, F., Marques, F., Soares, A. K. L., Silva, K. T., Leitão, R. C., Mazzetto, S. E. and Lomonaco, D. 2019. Microwave-Assisted Organosolv Delignification: A Potential Eco-Designed Process for Scalable Valorization of Agroindustrial Wastes. Industrial & Engineering Chemistry Research, 58(25), 10698-10706. doi:10.1021/acs.iecr.9b01168
  3. Azelee, N. I. W., Adnan, S. A. M., Manas, N. H. A., Dailin, D. J., Ramli, A. N. M. and Illias, R. M. 2019. Assessment of microwave-assisted pretreatments for enhancing pineapple waste delignification. Proceedings of the 2nd International Conference on Biosciences and Medical Engineering (ICBME2019) AIP Conf. Proc. 2155, 020003-1–020003-6;
  4. Bozell, J. J., Black, S. K., Myers, M., Cahill, D., Miller, W. P. and Park, S. 2011. Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals. Biomass and Bioenergy, 35(10), 4197-4208. doi:
  5. Cheng, J., Su, H., Zhou, J., Song, W. and Cen, K. 2011. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36(3), 2093-2101. doi:
  6. Dutta, S. K., Halder, G. and Mandal, M. K. 2014. Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach. Energy, 71, 579-587. doi:
  7. FAOSTAT. 2020. FAO Statistical Databases. Retrieved from 22 November 2020
  8. IRRI. 2020. RIce by-products: In Post Production of Rice. Retrieved from 08-02-2021
  9. Jin, K., Liu, X., Jiang, Z., Tian, G., Yang, S., Shang, L. and Ma, J. 2019. Delignification kinetics and selectivity in poplar cell wall with acidified sodium chlorite. Industrial Crops and Products, 136, 87-92. doi:
  10. Kang, Q., Appels, L., Tan, T. and Dewil, R. 2014. Bioethanol from Lignocellulosic Biomass: Current Findings Determine Research Priorities. The Scientific World Journal, 2014, 298153. doi:10.1155/2014/298153
  11. Kohli, K., Katuwal, S., Biswas, A. and Sharma, B. K. 2020. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresource Technology, 303, 122897. doi:
  12. Kucharska, K., Rybarczyk, P., Ho?owacz, I., ?ukajtis, R., Glinka, M. and Kami?ski, M. 2018. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes.Molecules, 23(11), 2937.
  13. Kumar, R., Hu, F., Hubbell, C. A., Ragauskas, A. J. and Wyman, C. E. 2013. Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresource Technology, 130, 372-381. doi:
  14. Laghari, S. M., Tunio, M. M., Laghari, A. Q., Laghari, A. J. and Ali, A. M. 2018. Delignification of Rice Husk by Microwave Assisted Chemical Pretreatment. Engineering, Technology & Applied Science Research, 8(3), 3084-3087. doi:10.48084/etasr.2143
  15. Lee, H. V., Hamid, S. B. A. and Zain, S. K. 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal, 2014, 631013. doi:10.1155/2014/631013
  16. Liu, Y., Chen, W., Xia, Q., Guo, B., Wang, Q., Liu, S., Liu, Y., Li, J. and Yu, H. 2017. Efficient Cleavage of Lignin–Carbohydrate Complexes and Ultrafast Extraction of Lignin Oligomers from Wood Biomass by Microwave-Assisted Treatment with Deep Eutectic Solvent. ChemSusChem, 10(8), 1692-1700.
  17. Lu, P. and Hsieh, Y.-L. 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1), 564-573.doi:
  18. Maurya, D. P., Singla, A. and Negi, S. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5(5), 597-609. doi:10.1007/s13205-015-0279-4
  19. Mukherjee, A., Banerjee, S. and Halder, G. 2018. Parametric optimization of delignification of rice straw through central composite design approach towards application in grafting. Journal of Advanced Research, 14, 11-23. doi:
  20. Noredyani, A. R. S., Zularisam, A. W., Noormazlinah, A. and Sakinah, A. M. M. 2020. Optimization of Delignification Process from Red MerantiWood Sawdust (RMWS) Pretreated with Acidified Sodium Chlorite. In M. Awang, M. M. Emamian, andF. Yusof (Eds.), Advances in Material Sciences and Engineering (pp. 155-168)
  21. Nour, A., Alara, O., Nour, A., Omer, M. and Ahmad, N. 2021. Microwave-Assisted Extraction of Bioactive Compounds (Review). In Microwave Heating (pp. 1-31): IntechOpen.
  22. Oun, A. A. and Rhim, J. W. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150, 187-200.doi:
  23. Oun, A. A. and Rhim, J. W. 2018. Isolation of oxidized nanocellulose from rice straw using the ammonium persulfate method. Cellulose, 25(4), 2143-2149. doi:10.1007/s10570-018-1730-6
  24. Park, J., Shin, H., Yoo, S., Zoppe, J. and Park, S. 2015. Delignification of Lignocellulosic Biomass and Its Effect on Subsequent Enzymatic Hydrolysis. BioResources, 10, 2732-2743. doi:10.15376/biores.10.2.2732-2743
  25. Paul, S. and Dutta, A. 2018. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resources, Conservation and Recycling, 130, 164-174. doi:
  26. Sain, M. 2020. Production of bioplastics and sustainable packaging materials from rice straw to eradicate stubble burning: A mini-review. Environment Conservation Journal, 21(3), 1-5. doi:
  27. Sain, M., Singh, A., Kaur, A., & Zalpouri, R. (2020). Metaphysical energy based sustainable yogic farming for enhanced productivity and farmers’ well being: A Review. Environment Conservation Journal, 21(3), 63-68. doi:
  28. Saratale, G. 2012. Lignocellulosics to ethanol: The future of the chemical and energy industry. African Journal of Biotechnology, 11, 1002-1013. doi:10.5897/AJB10.897
  29. Shengdong, Z., Ziniu, Y., Yuanxin, W., Xia, Z., Hui, L. and Ming, G. 2005. Enhancing enzymatic hydrolysis of rice straw by microwave pretreatment. Chemical Engineering Communications, 192(12), 1559-1566.
  30. Siqueira, G., Várnai, A., Ferraz, A. and Milagres, A. M. F. 2013. Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Applied Energy, 102, 399-402. doi:
  31. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Wolfe, J. (2008a). Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples "Laboratory Analytical Procedure (LAP)". Retrieved from National Renewable Energy Laboratory, Department of Energy, Colorado, USA:
  33. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D. (2012). Determination of Structural Carbohydrates and Lignin in Biomass "Laboratory Analytical Procedure (LAP)" (NREL/TP-510-42618). Retrieved from National Renewable Energy Laboratory, Department of Energy,Colorado, USA:
  34. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2008b). Determination of Extractives in Biomass. Retrieved from Colorado, USA:
  35. Subhedar, P. B. and Gogate, P. R. 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1), 216-225.
  36. doi:
  37. Sun, Y. C., Liu, X. N., Wang, T. T., Xue, B. L. and Sun, R. C. 2019. A Green Process for Extraction of Lignin by the Microwave-assisted Ionic Liquid Approach: Towards Biomass Biorefinery and Lignin Characterization. ACS Sustainable Chemistry & Engineering, 7.
  38. Veggi, P. C., Martinez, J. and Meireles, M. A. A. 2013. Fundamentals of Microwave Extraction. In F. Chemat and G. Cravotto (Eds.), Microwave-assisted Extraction for Bioactive Compounds: Theory and Practice (pp. 15-52). Boston, MA: Springer US.
  39. Xiao, B., Sun, X. F. and Sun, R. 2001. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw,and rice straw. Polymer Degradation and Stability, 74(2), 307-319. doi:
  40. Yaakob, M. N. A., Bin Roslan, R., Salim, N., Binti Mustapha, S. N. H., Zakaria, S., Chia, C. H., Sajab, M. S. and Yek, P. N. Y. 2020. Effect of Temperature on the Yield of Lignin Extracted Using Microwave-Assisted Acetosolv from Empty Fruit Bunch Fibers. Materials Science Forum, 981, 240-244. doi:10.4028/
  41. Yadav, S. P., Ray, A. K. and Ghosh, U. K. 2016. Optimization of Rice Straw Acid Hydrolysis Using Response Surface Methodology. American Journal of Environmental Engineering, 6(6), 174-183. doi:10.5923/j.ajee.20160606.03
  42. Yu, S., Sun, J., Shi, Y., Wang, Q., Wu, J. and Liu, J. 2021. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environmental Science and Ecotechnology, 5, 100077. doi:
  43. Zheng, Y., Zhao, J., Xu, F. and Li, Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42, 35-53. doi: