Main Article Content


Most of the horticultural crops are seasonal, having a relatively short harvesting season, and most of them are highly perishable. Hence, proper storage of the horticultural crops using appropriate methods would prolong their availability. The present article gives details about various storage structures classified into two categories, i.e., traditional storage/low-cost storage technologies and improved methods/ modern methods /high-cost storage technologies. Traditional storage structures can be beneficial for farmers needing a small-scale storage system. These systems include in-situ storage, sand and coir, clamps, pits, cellars, ventilated storage, and evaporative cooling. On the other hand, modern methods include refrigerated storages like cold storages, environment-controlled storage (controlled atmospheric storage), modified atmosphere storage, and hypobaric storage. All the storage methods are equally important and can provide high revenue to the farmers and food industries.


Controlled atmosphere storage evaporative horticulture hypobaric modified atmospheric packaging storage

Article Details

How to Cite
Kaur, J. ., Aslam, R. ., & Saeed, P. A. . (2021). Storage structures for horticultural crops: a review. Environment Conservation Journal, 22(SE), 95–105.


  1. Ares, G., Lareo, C. and Lema, P. 2007. Modified atmosphere packaging for postharvest storage of mushrooms. A review. Fresh Produce, 1(1): 32-40.
  2. Basediya A. L., Samuel D. V. K. and Beera V. 2013. Evaporative cooling system for storage of fruits and vegetables - a review. Journal of Food Science and Technology, 50(3): 429-442.
  3. Beaudry, R. M. 1999. Effects of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biology and Technology, 15: 293-303.
  4. Burg, S.P. 1976. Low temperature hypobaric storage of metabolically active matter. US patents 3,958,028 and 4,061,483.
  5. Burg, S.P. 2014. U.S. Patent No. 8,763,412. Washington, DC: U.S. Patent and Trademark Office.
  6. Cameron, A. C., Beaudry, R. M., Banks, N. H. and Yelanich, M. V. 1994. Modified atmosphere packaging of blueberry fruit: modeling respiration and package oxygen partial pressures as function of temperature. Journal of the American Society for Horticultural Science, 119(3): 4–539.
  7. Coles, R., McDowell, D. and Kirwan, M. J. (Ed.) 2003. Food packaging technology (Vol. 5). CRC Press.
  8. Dhatt, A. S. and Mahajan, B. V. C. 2007. Harvesting, handling and storage of horticultural crops.
  9. Elansari, A. M., Yahia, E. M. and Siddiqui, W. 2019. Storage Systems. In Postharvest Technology of Perishable Horticultural Commodities, Woodhead Publishing. pp: 401-437.
  10. El-Ramady, H. R., Domokos-Szabolcsy, É, Abdalla, N. A., Taha, H. S. and Fári, M. 2015. Postharvest management of fruits and vegetables storage. In Sustainable agriculture reviews, (pp. 65-152). Springer, Cham.
  11. Farber, J. N., Harris, L. J., Parish, M. E., Beuchat, L. R., Suslow, T. V., Gorney, J. R., Garrett, E. H. and Busta, F. F. 2003. Microbiological safety of controlled and modified atmosphere packaging of fresh and fresh?cut produce. Comprehensive reviews in food science and food safety, 2: 142-160.
  12. John, J. 2008. A handbook on post-harvest management of fruits and vegetables. Daya publishing house, Delhi. p.119.
  13. Kader, A. A. 1992. Postharvest biology and technology: An overview. In: A.A. Kader (ed.). Postharvest technology of horticultural crops.2nd ed. Univ. of California, Division of Agriculture and Natural Resources, Oakland. Publ. 3311: 15- 20.
  14. Kale, S. J., Nath, P., Jalgaonkar, K. R. and Mahawar, M. K. 2016. Low cost storage structures for fruits and vegetables Handling in Indian Conditions. Indian Horticulture Journal, 6(3): 376-379.
  15. Khalid, S., Majeed, M., Ullah, M. I., Shahid, M., Riasat, A. R., Abbas, T., Aatif, H. M. and Farooq, A. 2020. Effect of storage conditions and packaging material on postharvest quality attributes of strawberry. Journal of Horticulture and Postharvest Research, 3(2): 195-208.
  16. Khan, F. A., Bhat, S. A. and Narayan, S. 2017. Storage Methods for Fruits and Vegetables. Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir. Shalimar.
  17. Kitinoja, L. 2013. Use of cold chains for reducing food losses in developing countries. Population, 6(1.23): 5-60.
  18. Liberty J. T., Okonkwo, W. I. and Echiegu, E. A. 2013. Evaporative Cooling: A Postharvest Technology for Fruits and Vegetables Preservation. International Journal of Scientific & Engineering Research, 4(8): 2257-2266.
  19. Mahajan, P. V., Oliveira, F. A. R., Montanez, J. C. and Iqbal, T. 2008. Packaging design for fresh produce: an engineering approach. New Food, 11(1): 35-36.
  20. Mangaraj, S., Goswami, T. K. and Mahajan, P. V. 2009. Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Engineering Reviews, 1(2): 133-158.
  21. Nanda, S. K., Vishwakarma, R. K., Bathla, H. V. L., Rai, A. and Chandra, P. 2012. Harvest and post harvest losses of major crops and livestock produce in India. AICRP, (ICAR).
  22. Ndukwu M. C. and Manuwa S. I. 2014. Review of evaporative cooling in preservation of fresh agricultural produce. International Journal of Agricultural and Biological Engineering, 7(5): 85-102.
  23. Odesola I. F. and Onyebuchi, O. 2009. A review of porous evaporative cooling for the preservation of fruits and vegetables. Pacific Journal of Science and Technology, 10(2): 935-941.
  24. Paine, F. A. and Paine, H. Y. (Ed.) 1992. A handbook of food packaging. Springer Science & Business Media.
  25. Rais, M. and Sheoran, A. 2015. Scope of supply chain management in fruits and vegetables in India. Journal of Food Process Technology, 6(3): 1-7.
  26. Rees, D., Westby, A., Tomlins, K., Van Oirschot, Q., Cheema, M. U., Cornelius, E. and Amjad, M. 2012. Tropical root crops. Crop Post-Harvest: Science and Technology, Perishables, 3: 392-413.
  27. Roy, S. K. and Khurdiya, D. S. 1985. Zero energy cool chamber. India Agricultural Research Institute: New Delhi, India. Research Bulletin, 43: 23-30.
  28. Sahoo, K., Bandhyopadhyay, B., Mukhopadhyay, S., Sahoo, U., Kumar, T. S., Yadav, V. and Singh, Y. 2019. Cold Storage with Backup Thermal Energy Storage System. Progress in Solar Energy Technologies and Applications. pp: 181-232.
  29. Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F. and Flores, F. B. 2009. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89(4): 555-573.
  30. Soltani, M., Alimardani, R., Mobli, H. and Mohtasebi, S. S. 2015. Modified atmosphere packaging: A progressive technology for shelf-life extension of fruits and vegetables. Journal of Applied Packaging Research, 7(3): 33-59.
  31. Stenvers, N. and Bruinsma, J. 1975. Ripening of tomato fruits at reduced atmospheric and partial oxygen pressures. Nature, 253: 532-533.
  32. Vithu, P. and Moses, J. A. 2017. Hypobaric Storage of Horticultural Products: A Review. In Engineering Practices for Agricultural Production and Water Conservation, Apple Academic Press. pp: 155-170.
  33. Yahia, E. M., Fadanelli, L., Mattè, P. and Brecht, J. K. 2019. Controlled Atmosphere Storage. In Postharvest Technology of Perishable Horticultural Commodities, Woodhead Publishing. pp: 439-479.
  34. Zhang, M., Meng, X., Bhandari, B., Fang, Z. and Chen, H. 2015. Recent application of modified atmosphere packaging (MAP) in fresh and fresh-cut foods. Food Reviews International, 31(2): 172-193.