Main Article Content

Abstract

Anopheles breeding in relation to aquatic vegetation and certain physico-chemical parameters was studied in rice fields of Purnia district. Association of larvae with different types of aquatic vegetation in different proportions was observed. Maximum Anopheles larvae were found associated with green and blue green algae. It indicates that algae encountered mosquito breeding by providing food and shelter followed by Ipomea, Hydrilla and water hyacinth. Among physico-chemical parameters pH, temperature, turbidity, electrical conductivity, DO, nitrate, carbonate and phosphate showed positive correlation while chloride and bicarbonate showed negative correlation. It can be concluded that aquatic vegetation usually growing in rice fields influences Anopheles breeding and their abundance varies with the occurrence and intensity of each aquatic plant. Physico-chemical factors also exert impact on larval survival and emergence. Thus, such factors should be considered when designing an integrated vector control program. However, a detailed study on the role of other interrelated factors such as predator-parasitie relationship, cultivation practices, emergence rate etc is needed for full understanding of the subject. Although the specific soil type was not analyzed in this survey, other reports indicated that there is variation in development of Anopheles larva among the different soil types

Keywords

Malaria Anopheles Aquatic vegetation Physico-chemical factors Emergence rate Purnia

Article Details

How to Cite
Pandey, B. N. . ., & Kumari, R. . (2013). Anopheles breeding in relation to aquatic vegetation and certain physico-chemical parameters in rice fields of Purnia district. Environment Conservation Journal, 14(1&2), 121–125. https://doi.org/10.36953/ECJ.2013.141221

References

  1. APHA, AWWA,WPCF. 1998. Standard methods for the examination of water and waste water. 20th ed., Washington D. C., New York.
  2. Amerasinghe, F. P., Indrajith ,N. G., Ariyasena, T. G. 1995..Physicochemical characteristics of mosquito breeding habitats in an irrigation development area in Sri Lanka. Ceylon J Sci (Biological Sciences), 24: 13–29.
  3. Burke, R., Barrera, R., Lews, M., Kluchinsky, T. and Claborn, D. 2010. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico. Medical and Veterinary Entomology, 24:117–123
  4. Carnevale P., Guillet, P.,Robert, V.,Fontenille, D, Doannio, J, Coosemans, M., Mouchet, J. 1999. Diversity of malaria in rice growing areas of the Afrotropical region. Parassitologia, 41(1-3):273 -6.
  5. Carpenter, S. R. 1982. Stem flow chemistry : effects on population dynamics of detrivorous mosquitoes in tree hole ecosystems. Oecologia (Berl), 53:1–6.
  6. Chandler, J. A. and Highton, J. A. 1975.The succession of mosquito species (Diptera: Culicidae) in rice fields in Kisumu area of Kenya and their possible control. Bull.Environ. Res., 65: 295 – 302.
  7. Claudia M. O’Malley. 1992. The biology of Anopheles quadrimaculatus say. Proceedings of the Seventy-Ninth Annual Meeting of the New Jersey Mosquito Control Association, Inc., 136 – 144,
  8. Faehler, O., Oulo, D. O., Gouagna, L. C., Githure, J. I. and Guerin, P. M. 2006. Influence of soil quality in the larval habitat on development of Anopheles gambiae Giles. Journal of Vector Ecology, 31:400–405.
  9. Gimnig, J. E., Ombok, M, Kamau, L, and Hawley, W. 2001. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya, J Med Entomol, 38(2):282-288.
  10. Gupta, Adebote, D. A., Oniye, S. J. and Muhammed, Y. A. 2008. Studies on mosquitoes breeding in rock pools on inselbergs around Zaria, northern Nigeria. Journal of Vector Borne Diseases, 45:21–28
  11. Kramer,V. L. and Garica, R. 1989. An analysis of factors affecting mosquito abundance in California wild rice fields. Bull. Soc. Vect. Ecol., 14: 87 – 92.
  12. Minakawa, N., C.M. Mutero, J.I. Githure, J.C. Beier and G. Yan, 1999. Spatial distribution and habitat characterization of Anopheline mosquitoes in western Kenya. Am. J. Trop. Med. Hygiene, 61: 1010-1016.
  13. Mutero, C.M., Ng’ang’a, P. N., Wekoyela, P., Githure, J., Konradsen, F. 2004. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields. Acta Trop., 89:187–192.
  14. Orr, B. K. and Resh, V. H. 1989. Experimental test of the influence of aquatic macrophyte cover on the survival of Anopheles larvae. J. Am. Mosq. Control Assoc., 5:579-585.
  15. Oyewole, I. O., Momoh, O. O., Anyasor, G. N., Ogunnowo, A. A., Ibidapo, C. A., Oduola, O.A., Obansa, J. B. and Awolola, T. S. 2009. Physico-chemical characteristics of Anopheles breeding sites: Impact on fecundity and progeny Development. Afr J Environ Sci Technol., 3(12):447–452.
  16. Pal, R. 1945. On the bionomics of Anopheles culicifacies Giles,Pt II: the ecology of theimmature stages. J Mal Inst India, 6: 53–74
  17. Piyartnea, M. K., Amerasinghea, F. P., Amerasinghea, P. H. and Konradsena, F. 2005 Physico-chemical characteristics of Anopheles culicifacies and Anopheles varuna breeding water in dry zone stream in Sri Lanka. J. Vect. Borne Dis. 61 – 67.
  18. Rajani, K., Pandey, S. D. and Sharma, S. K. 1996. Mosquito breeding in relation to aquatic vegetation and some physic-chemical parameters in rice fields of central Gujarat. J. Mal., 33: 30 – 40.
  19. Rajendran, R. 1987. Mosquito larval density in relation to agricultural practices. In Proc of the Symposium on: "Alternatives to synthetic insecticides in integrated pest management system". Edited by Reuben R, Sundrababu, P. C. CRME (ICMR) andM.K. University, Madurai,135 – 142
  20. Rajendran R. and Reuben R. 1991.Evaluation of water fern Azolla microhilla for mosquito population management in the rice-land agrosystem of south India. Medical and veterinary Entomology, 5:299-310.
  21. Rejmankova, E., Savage, H.M., Rejmanek, M., Arredondo-Jimenez, J.I.and Roberts, D. R. 1991. Multivariate analysis of relationships between habitats, environmentalfactors and occurrence of anopheline mosquito larvae Anopheles albimanus and An. pseudopunctipennis in southern Chiapas, Mexico. J Appl. Ecol., 28:827–841.
  22. Rejmankova, E., Roberts, D. R., Harbach, R.E., Pecor, J., Peyton, E. L., Manguin, S., Krieg, R., Polanco, and J., Legters, L. 1993. Environmental and regional determinants of Anopheles (Diptera: Culicidae) larval distribution in Belize Central America. Environ. Entomol., 22(5):978–992.
  23. Russell, P. F. and Rao, T. 1942. On the ecology of larvae of Anopheles culicifacies Giles in borrow pits. Bull. Entomol. Res., 32: 341–61
  24. Schaefer, C. H. Miura, T., Stewart, R. J. and Takahashi, R. M. 1983. Studies on relationship of mosquito breeding in rice fields and sewage effluents for irrigation. Proc. Calif.Mosq. Vect. Contr. Assoc., 50: 59 – 65
  25. Sen, P. 1941.Aquatic plants in the ecology of anopheline mosquitoes. J. Mal.Inst. India, 4: 113 – 137.
  26. Trivedy, R, K. and Goel, P. K. 1984. Chemical and Biological Methods of Water Pollution Studies. (Environmental Publishers, Karad)
  27. Van der Hoek, W, Amerasinghe, F. P, Konradsen, F, Amerasinghe, P.H. 1998. Characteristics of malaria vector breeding habitats in Sri Lanka :relevance for environmental management. Southeast Asian J Trop Med Pub Hlth, 29: 168–72.