Assessing impact of dams on genetic diversity of native fish Mastacembelus armatus in river Yamuna using mitochondrial DNA cytochrome-b sequences as a molecular marker

##plugins.themes.academic_pro.article.main##

Madhu Thapliyal
B. K. Sati
A. Thapliyal

Abstract

Several dams have been constructed in Uttarakhand.  In the present study an investigation on  impact of dams on genetic diversity of native fish species Mastacembelus armatus at the Asan barrage on river Yamuna near Vikasnagar, Uttarakhand in India was done.  Partial sequence of mitochondrial Cytochrome-b (Cyto-b) gene was used to determine the genetic variation in the population of Mastacembelus armatus. DNA was extracted from Mastacembelus armatus (n=33) samples, collected from river Yamuna and its tributary Asan from fin and fishes were released back in their habitat. Cytochrome c oxidase I (COI) was used to ascertain the species of fish along with morphometric characters. Analysis of 324 bp mtDNA fragment of Cyto-b revealed the presence of 06 haplotypes with nucleotide diversity, value ranged from 0.0172 to 0.0021 low pair wise Fst value was observed negative (-0.00125) when compared between Asan barrage and Kalsi site.  No genetic subdivisions between the population were found after or before the dam sites. Tajima’s D value for river Asan, site A1 Mirzapur (before dam) was -0.1167 (a negative value). Negative Tajima D value can be indicative of recent selective sweep or population expansion after a recent bottleneck and linkage to a swept gene. Our data shows that fragmentation of habitat by dams does not have any impact on the genetic diversity of non-migrating Mastacembelus armatus fish species.

##plugins.themes.academic_pro.article.details##

How to Cite
Thapliyal, M., Sati, B. K. ., & Thapliyal, A. . (2020). Assessing impact of dams on genetic diversity of native fish Mastacembelus armatus in river Yamuna using mitochondrial DNA cytochrome-b sequences as a molecular marker. Environment Conservation Journal, 21(1&2), 39-47. https://doi.org/10.36953/ECJ.2020.211205

References

  1. Apostolidis, A.P., Triantaphyllidis, C., Kouvatsi, A. and Economidis, P.S. 1997. Mitochondrial DNA sequence variation and phylogeography among Salmo trutta L.(Greek brown trout) populations. Mol. Ecol., 6(6):531-542.
  2. Araújo, C.V., Silva, D.C., Gomes, L.E., Acayaba, R.D., Montagner, C.C., Moreira-Santos, M. and Pompêo, M.L.. 2018. Habitat fragmentation caused by contaminants: atrazine as a chemical barrier isolating fish populations. Chemosphere, 193: 24-31.
  3. Bandelt, H.J., Forster, P. and Röhl, A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Bio. and Evol., 16(1): 37-48.
  4. Barbarossa, V., Schmitt, R.J., Huijbregts, M.A., Zarfl, C., King, H. and Schipper, A.M. 2020. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. of the Nat. Acad. of Sci., 117(7), 3648-3655.
  5. Benke, A.C. 1990. A perspective on America's vanishing streams. J. of the N. Am. Bentho. Soc., 9(1): 77-88.
  6. Bouzat, J.L.. 2010. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Cons. Gen., 11(2): 463-478.
  7. Brown, J.J., Limburg, K.E., Waldman, J.R., Stephenson, K., Glenn, E.P., Juanes, F. and Jordaan, A. 2013. Fish and hydropower on the US Atlantic coast: failed fisheries policies from half‐way technologies. Cons. Let., 6(4): 280-286.
  8. Buj, I., Šanda, R., Marčić, Z., Ćaleta, M. and Mrakovčić, M. 2014. Combining morphology and genetics in resolving taxonomy–a systematic revision of spined loaches (genus Cobitis; Cypriniformes, Actinopterygii) in the Adriatic watershed. PloS one, 9(6): e99833.
  9. Colwell, R.K. and Coddington, J.A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical. Trans. of the Roy. Soc. of Lond.. Series B: Biol. Sci., 345(1311): 101-118.
  10. De Jong, M.A., Wahlberg, N., Van Eijk, M., Brakefield, P.M. and Zwaan, B.J. 2011. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PloS one, 6(6): e21385.
  11. Excoffier, L. and Lischer, H. E. Arlequin suite ver 3.5: 2010. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Reso., 10(3): 564-567.
  12. Fischer, J. and Lindenmayer, D.B. 2007. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. and Biogeo., 16(3): 265-280.
  13. Fuller, M.R., Doyle, M.W., & Strayer, D.L. 2015. Causes and consequences of habitat fragmentation in river networks. Ann. of the N.Y. Acad. of Sci., 1355(1): 31-51.
  14. Goudie, A.S. 2018 Human impact on the natural environment. John Wiley & Sons.
  15. James, W.F. and Barko, J.W. 1990. Macrophyte influences on the zonation of sediment accretion and composition in a north-temperate reservoir. Arch. für Hydrobiol., 120(2): 129-142.
  16. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. of Mol. Evol., 16(2): 111-120.
  17. Kocher, T.D., Conroy, J.A., McKaye, K.R. and Stauffer, J.R. 1993. Similar morphologies of cichlid fish in Lakes Tanganyika and Malawi are due to convergence. Mol. Phylog. and evol., 2(2): 158-165.
  18. Leeuwen, V.C.H., Dalen, K., Museth, J., Junge, C. and Vøllestad, L.A. 2018. Habitat fragmentation has interactive effects on the population genetic diversity and individual behaviour of a freshwater salmonid fish. Riv. Res. and Appl., 34(1): 60-68.
  19. Librado, P. and Rozas, J. 2009. Software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452.
  20. Mantel, S.K., Rivers, Moore, N. and Ramulifho, P. 2017. Small dams need consideration in riverscape conservation assessments. Aquatic Conservation: Mar. and Fresh. Ecosys, 27(4): 748-754.
  21. McDermid, J.L., Nienhuis, S., Al‐Shamlih, M., Haxton, T.J., & Wilson, C.C. 2014. Evaluating the genetic consequences of river fragmentation in lake sturgeon (Acipenser fulvescens Rafinesque, 1817) populations. J. of Appl. Ichthyo., 30(6): 1514-1523.
  22. Mora, C., Danovaro, R. and Loreau, M. 2014. Alternative hypotheses to explain why biodiversity-ecosystem functioning relationships are concave-up in some natural ecosystems but concave-down in manipulative experiments. Sci. Rep., 4: 5427.
  23. Morita, K., Morita, S. H. and Yamamoto, S. 2009. Effects of habitat fragmentation by damming on salmonid fishes: lessons from white-spotted charr in Japan. Ecol. Res., 24(4): 711-722.
  24. Mount, D.W. 2008. Maximum parsimony method for phylogenetic prediction. Cold Spring Harbor Protocols, 2008(4): pdb-top32.
  25. Pavlova, A., Beheregaray, L.B., Coleman, R., Gilligan, D., Harrisson, K.A., Ingram, B.A. and Nguyen, T.T. 2017. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. Evol. Appl., 10(6): 531-550.
  26. Pereira, H.R., Gomes, L.F., de Oliveira Barbosa, H., Pelicice, F.M., Nabout, J.C., Teresa, F.B. and Vieira, L.C.G. 2020. Research on dams and fishes: determinants, directions, and gaps in the world scientific production. Hydrobiologia, 847(2): 579-592.
  27. Ramos-Onsins, S.E. and Rozas, J. 2002. Statistical properties of new neutrality tests against population growth. Mol. Bio.and Evol., 19(12): 2092-2100.
  28. Reid, S.M., Wilson, C.C., Mandrak, N.E. and Carl, L.M. 2008. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed. Cons. Gen., 9(3): 531.
  29. Rodrigues, J.F.M., Olalla, Tárraga, M.Á., Iverson, J.B., Akre, T.S., and Diniz, Filho, J.A.F. 2017. Time and environment explain the current richness distribution of non marine turtles worldwide. Ecography, 40(12): 1402-1411.
  30. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. MEGA6 2013. molecular evolutionary genetics analysis version 6.0. Mol. Bio. and Evol. 30(12): 2725-2729.
  31. Thapliyal, M., Pokhriyal, H., Sati, B.K., Nagpure, N. S., Singh, M. and Thapliyal, A. 2015. Molecular characterization of coldwater fishes of district Uttarkashi, Uttarakhand using DNA Barcoding. Envi. Cons. J., 16(3): 109-116.
  32. Thapliyal, M., Bahuguna, S.N. and Thapliyal, A. 2019. Adaptive skill of Schizothorax sp. of river Alaknanda under long term pressure of urbanization and anthropogenic activities in Garhwal Himalaya. Envi. Cons. J., 20(1&2): 157-63.
  33. Waples, R.S., Zabel, R.W., Scheuerell, M.D. and Sanderson, B.L. 2008. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system. Mol. Ecol., 17(1): 84-96.
  34. Yamamoto, S., Morita, K., Koizumi, I. and Maekawa, K. 2004. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Cons. Gen., 5(4): 529-538.