Main Article Content

Abstract

A cyanobacterium having high relative abundance in sewage irrigated soil was isolated and identified as Lyngbya contorta. The species was tested for tolerance towards heavy metals, Cu2+, Zn2+, Ni2+and Cd2+ (0.5 to 10 mg/L) in single metal systems under controlled laboratory conditions. Our results show that the studied strain has a distinctive response towards each heavy metal, it was most affected by Ni2+ followed by Cu2+, Zn2+, Cd2+ ions. The studied strain showed better response as indicated by higher concentrations of sugar, proteins and photosynthetic pigments in aqueous Cd2+ solutions as compared to that at control. The incubation of cyanobacterial cells with lower concentrations of heavy metals (Cu2+, Zn2+, Ni2+) enhanced the growth rate, soluble proteins and photosynthetic pigments, while elevated concentrations were observed to be inhibitory. The present study demonstrates the capability of isolated indigenous species to withstand heavy metal stress at low concentrations and can be utilized for bioremediation of contaminated lands.

Keywords

Heavy metals indigenous organic constituents pigments proteins

Article Details

How to Cite
Dhankhar , R. ., & Rana, L. . . (2016). Growth and biochemical constituents of an indigenous cyanobacterium affected by heavy metal stress. Environment Conservation Journal, 17(3), 37–43. https://doi.org/10.36953/ECJ.2016.17308

References

  1. Andersen, R.A., Kawachi, M., 2005. Traditional microalgae isolation techniques. In Andersen, R. A. (ed.), Algal Culturing Techniques. Elsevier Academic Press, Tokyo, 83–100.
  2. Angeles, B. M., Cruz, C., Martins-Loucao, M. A. and Cerda, A., 1993. Nitrate reductase activity in wheat seedlings as affected by NO3-/NH4+ration and salinity, J. Plant Physiol. 142(5), 531-536.
  3. Babu, N. G., Sharma, P. A., Attitalla, I. H., Murthy, S. D.S., 2010. Effect of Selected Heavy Metal Ions on the Photosynthetic Electron Transport and Energy Transfer in the Thylakoid Membrane of the Cyanobacterium, Spirulina platensis, Academic Journal of Plant Sciences, 3(1), 46-49.
  4. Bala, K., Thanasekaran, K., 2011. Metal tolerance of an indigenous cyanobacterial strain, Lyngbya contorta, International Biodeterioration & Biodegradation. 65(8),1128–1132.
  5. Bityutskiim, N. P., 1999. Mikroelementy i rastenie (Micronutrients and Plant), St. Petersburg S.-Pb. Gos. Univ.
  6. Blindauer, C.A., 2011. Bacterial metallothioneins: Past, present, and questions for the future. J. Biol. Inorg. Chem. 16, 1011–1024.
  7. Campbell, P. M., Smith, G. D., 1986. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrical. Arch. Biochem. Biophys. 244, 470-477.
  8. Carrieri, D., Gennady, A., Amaya, M., Garcia, C., Donald, A., Bryant, G., Charles Dismukes, 2008. Renewable hydrogen production by cyanobacteria: Nickel requirements for optimal hydrogenase activity. Int. J. Hyd. Ener. 33(8), 2014-2022.
  9. Chauvat, C., and Chauvat, F., 2015. Review Responses to Oxidative and Heavy Metal Stresses in Cyanobacteria: Recent Advances. Int. J. Mol. Sci. 16, 871-886.
  10. Cid, A., Herrero, C., Torres, E., Abalde, J., 1995. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aqua. Toxicol. 31(2), 165-174.
  11. Debelius, B., Forja, J. M., Delvalls, A., Lubian, L. M., 2009. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol. Environ. Safety. 72, 1503-1513.
  12. Desikachary, T.V., 1959. Cyanophyta, Indian Council of Agricultural Research, New Delhi, India.
  13. Dodor, D. E., Tabatabai, M. A., 2003. Effect of cropping systems on phosphatases in soils. J. Plant Nutr.Soil Sci. 166, 7-13.
  14. Dubey, R. S., 1997. Photosynthesis in plants under stressful conditions. - In: Pessarakli, M. (ed.):Handbook of Photosynthesis, M. Dekker, New York, 859-876.
  15. Fargasova, A., 1999. The green alga Scenedesmus quadricauda– a subject for the study of inhibitory effects of Cd, Cu, Zn, Pb and Fe. Biologia. 54,393-398.
  16. Franklin, N. M., Stauber, J. L., Lim, R. P., 2001. Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters Environ. Toxicol. Chem. 20, 160-170.
  17. Goudey, J. S., 1987. Modeling the inhibitory effects of metals on phytoplankton growth Aqua. Toxicol. 10, 265-278.
  18. Healy, F. P. 1985. Induction effects of light and nutrient limitation on the growth of Synchoccus linearis(Cyanophyceae). J. Phycol. 21, 134-148.
  19. Zoua, H.X., Pangb, Q. Y., Zhanb, A. Q., Linb, L.D., Lia, N., Yana, X. F., 2015. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme. Ecotoxicology and Environmental Safety. 111, 271–280.
  20. Imlay, J.A., 2014. The Mismetallation of enzymes during oxidative stress. J. Biol. Chem. 289, 28121–28128
  21. Jin, Z., Liuyan, Y., Wen-Xiong, W., 2009. Cadmium and zinc uptake and toxicity in two strains of Microcystis aeruginosa predicted by metal free ion activity and intracellular concentration. Aqua.Toxicol. 91(3), 212-220.
  22. Lamaia, C., Kruatrachuea, M., Pokethitiyooka, P., Upathamb, E. S., Soonthornsarathoola, V., 2005. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta: A laboratory study. Sci. Asia. 31, 121-127.
  23. Lowry, O. M., Rosenbrough, N. J., Farr, L. A., Randall, R. J., 1951. Protein measurements with the folin phenol reagent. J. biol. Chem. 193, 265-275.
  24. Machado, M. D., Lopes, A. R., Soares E.V., 2015. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. J. Hazardous materials. 296, 82-92.
  25. Mackinney, G., 1941. Absorption of light by chlorophyll solutions. J. biol. Chem. 140, 315-322.
  26. Mamboya, F. A., Pratap, H. B., Mtolera, M., Bjork, M., 1999. The effect of copper on daily growth rate and photosynthetic efficiency of the brown macroalgae Padina boegesenni. :In Richmond MD, Francis J(eds) Proceedings of the conference on advances on marine sciences. Tanzania. 185-192.
  27. McGinna, P. J., Dickinsona, K. E., Parka, K.C., Whitneya, C. G., MacQuarriea, S. P., Blackb, F. J., Frigonc, J., Guiotc, S. R., O'Learya, S. J. B., 2012. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Research. 1(2), 155-165.
  28. Morand, L. Z., Cheng, R. H., Krogmann, D. W., Ho, K. K., 1991. Soluble electron transfer catalysts of cyanobacteria. In:D.A. Bryant(ed.), The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands. 381-407.
  29. Mota, R., Pereira, S. B., Meazzini, M., Fernandes, R., Santos, A., Evans, C. A., Philippis, R.D., Wright, P. C., Tamagnini P., 2015. Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. Journal of proteomics. 120, 75-94.
  30. Prasad, A. S., 1995. Zinc: An Overview. Nutrition. 11, 93-99.
  31. Rai, L. C., Raizada, M., Mallick, N., Husaini, Y., Singh, A. K., Dubey, S. K., 1990. Effect of four heavy metals on the biology of Nostoc muscorum. Biol. Met. 2(4), 229-234.
  32. Rana, L., Chhikara, S., 2011. Cyanobacterial composition under sewage irrigated and tubewell irrigated agroecosystems in Rohtak city, Haryana, India. Environ. We Int. J. Sci. Tech. 6(1), 39-48.
  33. Shashirekha, V., Sridharan, M.R., Swamy, M., 2015. Biochemical response of cyanobacterial species to trivalent chromium stress. Algal Research. 12, 421–430
  34. Shavyrina, O. B., Gapochka, L. D., Azovskii, A. I., 2001. Development of tolerance for copper in cyanobacteria repeatedly exposed to its toxic effect. Biol. Bull. 28(2), 183-187.
  35. Shukla, M. K., Tripathi, R. D., Sharma, N., Dwivedi, S., Mishra, S., Singh, S., Shukla, O. P., Rai, U. N., 2009. Responses of cyanobacterium Anabaena doliolum during nickel stress. J. Environ. Biol. 30(5), 871-876.
  36. Spiro, R. G., 1966. Analysis of sugars found in glycoproteins. Methods in Enzymol. 8, 3-26.
  37. Stanier, R. Y., Kunisawa, R., Mandal, M., Cohen-Bazire, G., 1971. Purification and properties of unicellular blue green-algae(Order: Chrococcales). Bacteriol. Rev. 35, 171-305.
  38. Stauber, J. L., Florence, T. M., 1987. The mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94, 511-519.
  39. Tam, N. F. Y., Wong, J. P. K., Wong, Y. S., 2001. Repeated use of two Chlorella species, C. vulgaris and WW1 for cyclic nickel biosorption. Environ. Poll. 114(1), 85-92.
  40. Udel’nova, T. M., Yagodin, B. A., 1993. Zinc in the Life of Plant, Animal, and Human. Usp. Sovrem.Biol. 113, 176-189.
  41. Visviki, I., Rachlin, J. W., 1991. The toxic actions and interactions of copper and cadmium to marine alga Dunaliella minuta in both acute and chronic exposure. Arch Environ Contam Toxicol. 2, 271-275.
  42. Waldron, K.J., Robinson, N.J., 2009. How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35
  43. Wong, S. L., Nakamoto, L., Wainwright, J. F., 1994. Identification of toxic metals in affected algal cells in assays of wastewaters. J. Appl. Phycol. 6, 405-414.
  44. Xiaolei-Jin, D. J. K., Nalewajko, C., 1996. Nickel uptake and release in nickel-resistant and –sensitive strains of Scenedesmus Acutus F. Alternans (Chlorophyceae). Environ. Exp. Bot. 36(4), 401-411.