Main Article Content

Abstract

Fungal biofilms are complex and resistant structures that pose a challenge in treating infections. Active phytoconstituents are natural compounds derived from plants that have shown promising antifungal properties. Many reports of antimicrobial resistance in human pathogenic fungi demand immediate attention to explore new therapeutics. Plant-based therapeutics alone or in conjugated form have shown promising results against fungal biofilms. Several studies have reported the effectiveness of various phyto constituents in inhibiting the formation and dispersal of fungal biofilm. Different mechanisms, such as disrupting cell signaling pathways, inhibiting biofilm matrix formation, and altering the fungal cell wall structure, have demonstrated the effectiveness of these compounds. This review focuses on the use of active phytoconstituents as potential agents against fungal biofilm.


 

Keywords

Antifungal Biofilm Candida Mode of action Plant-derived compounds

Article Details

How to Cite
Jha, M., Agarwal , J., Gautam, P., & Kumar, N. (2024). Effectiveness & mechanism of phytoconstituents against Candida biofilm. Environment Conservation Journal, 25(4), 1127–1139. https://doi.org/10.36953/ECJ.30601324

References

  1. Al-Otibi, F., Alkhudhair, S. K., Alharbi, R. I., Al-Askar, A. A., Aljowaie, R. M., & Al-Shehri, S. (2021). The antimicrobial activities of silver nanoparticles from aqueous extract of grape seeds against pathogenic bacteria and fungi. Molecules, 26(19), 6081. DOI: https://doi.org/10.3390/molecules26196081
  2. Arita-Morioka, K. I., Yamanaka, K., Mizunoe, Y., Tanaka, Y., Ogura, T., & Sugimoto, S. (2018). Inhibitory effects of Myricetin derivatives on curli-dependent biofilm formation in Escherichia coli. Scientific reports, 8(1), 8452. DOI: https://doi.org/10.1038/s41598-018-26748-z
  3. Berköz, M., Yıldırım, M., Yalın, S., İlhan, M., & Yunusoğlu, O. (2020). Myricetin inhibits angiotensin converting enzyme and induces nitric oxide production in HUVEC cell line. General Physiology & Biophysics, 39(3). DOI: https://doi.org/10.4149/gpb_2020007
  4. Bochenska, O., Rapala-Kozik, M., Wolak, N., Kamysz, W., Grzywacz, D., Aoki, W., ... & Kozik, A. (2015). Inactivation of human kininogen-derived antimicrobial peptides by secreted aspartic proteases produced by the pathogenic yeast Candida albicans. Biological Chemistry, 396(12), 1369-1375. DOI: https://doi.org/10.1515/hsz-2015-0167
  5. Butler, J., Handy, R. D., Upton, M., & Besinis, A. (2023). Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS nano, 17(8), 7064-7092. DOI: https://doi.org/10.1021/acsnano.2c12488
  6. Campos, L. M., Silva, T. P., de Oliveira Lemos, A. S., Diniz, I. O. M., Palazzi, C., da Rocha, V. N., ... & Fabri, R. L. (2023). Antibiofilm potential of Annona muricata L. ethanolic extract against multi-drug resistant Candida albicans. Journal of Ethnopharmacology, 116682. DOI: https://doi.org/10.1016/j.jep.2023.116682
  7. Cavalheiro, M., & Teixeira, M. C. (2018). Candida biofilms: threats, challenges, and promising strategies. Frontiers in medicine, 5, 28. DOI: https://doi.org/10.3389/fmed.2018.00028
  8. Costa, P. D. S., Prado, A., Bagon, N. P., Negri, M., & Svidzinski, T. I. E. (2022). Mixed fungal biofilms: From mycobiota to devices, a new challenge on clinical practice. Microorganisms, 10(9), 1721. DOI: https://doi.org/10.3390/microorganisms10091721
  9. de Andrade Monteiro, C., & dos Santos, J. R. A. (2019). Phytochemicals and their antifungal potential against pathogenic yeasts. Phytochemicals in human health, 1-31. DOI: https://doi.org/10.5772/intechopen.87302
  10. Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B. M., Bhakta, T., & Kim, H. S. (2020). Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent advances in natural products analysis (pp. 505-567). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-816455-6.00015-9
  11. Dos Santos Ramos, M. A., Da Silva, P. B., Spósito, L., De Toledo, L. G., Bonifácio, B. V., Rodero, C. F., ... & Bauab, T. M. (2018). Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International journal of nanomedicine, 1179-1213. DOI: https://doi.org/10.2147/IJN.S146195
  12. Fagbemi, K. O., Aina, D. A., Adeoye-Isijola, M. O., Naidoo, K. K., Coopoosamy, R. M., & Olajuyigbe, O. O. (2022). Bioactive compounds, antibacterial and antioxidant activities of methanol extract of Tamarindus indica Linn. Scientific Reports, 12(1), 9432. DOI: https://doi.org/10.1038/s41598-022-13716-x
  13. Fanning, S., & Mitchell, A. P. (2012). Fungal biofilms. PLoS pathogens, 8(4), e1002585. DOI: https://doi.org/10.1371/journal.ppat.1002585
  14. Farazuddin, M., Dua, B., Zia, Q., Khan, A. A., Joshi, B., & Owais, M. (2014). Chemotherapeutic potential of curcumin-bearing microcells against hepatocellular carcinoma in model animals. International Journal of Nanomedicine, 1139-1152. DOI: https://doi.org/10.2147/IJN.S34668
  15. Gácser, A., Stehr, F., Kröger, C., Kredics, L., Schäfer, W., & Nosanchuk, J. D. (2007). Lipase 8 affects the pathogenesis of Candida albicans. Infection and immunity, 75(10), 4710-4718. DOI: https://doi.org/10.1128/IAI.00372-07
  16. Ganjikunta, V. S., Maddula, R. R., Bhasha, S., Sahukari, R., Kondeti Ramudu, S., Chenji, V., ... & Korivi, M. (2022). Cardioprotective Effects of 6-Gingerol against Alcohol-Induced ROS-Mediated Tissue Injury and Apoptosis in Rats. Molecules, 27(23), 8606. DOI: https://doi.org/10.3390/molecules27238606
  17. Giriraju, A., & Yunus, G. Y. (2013). Assessment of antimicrobial potential of 10% ginger extract against Streptococcus mutans, Candida albicans, and Enterococcus faecalis: An: in vitro: study. Indian journal of dental research, 24(4), 397-400. DOI: https://doi.org/10.4103/0970-9290.118356
  18. Greco, G., Turrini, E., Catanzaro, E., & Fimognari, C. (2021). Marine anthraquinones: pharmacological and toxicological issues. Marine drugs, 19(5), 272. DOI: https://doi.org/10.3390/md19050272
  19. Guimarães, R., Milho, C., Liberal, Â., Silva, J., Fonseca, C., Barbosa, A., ... & Barros, L. (2021). Antibiofilm potential of medicinal plants against Candida spp. oral biofilms: A review. Antibiotics, 10(9), 1142. DOI: https://doi.org/10.3390/antibiotics10091142
  20. Gupta, P., Mishra, P., Mehra, L., Rastogi, K., Prasad, R., Mittal, G., & Poluri, K. M. (2021). Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine, 16(25), 2269-2289. DOI: https://doi.org/10.2217/nnm-2021-0274
  21. Heinz, H., Pramanik, C., Heinz, O., Ding, Y., Mishra, R. K., Marchon, D., ... & Ziolo, R. F. (2017). Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surface Science Reports, 72(1), 1-58. DOI: https://doi.org/10.1016/j.surfrep.2017.02.001
  22. Janeczko, M., Gmur, D., Kochanowicz, E., Górka, K., & Skrzypek, T. (2022). Inhibitory effect of a combination of baicalein and quercetin flavonoids against Candida albicans strains isolated from the female reproductive system. Fungal Biology, 126(6-7), 407-420. DOI: https://doi.org/10.1016/j.funbio.2022.05.002
  23. Janeczko, M., Masłyk, M., Kubiński, K., & Golczyk, H. (2017). Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast, 34(6), 253-265. DOI: https://doi.org/10.1002/yea.3230
  24. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), 1050-1074. DOI: https://doi.org/10.3762/bjnano.9.98
  25. JF, S. (1999). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 283, 1535-1538.
  26. Joudeh, N., & Linke, D. (2022). Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology, 20(1), 262. DOI: https://doi.org/10.1186/s12951-022-01477-8
  27. Khameneh, B., Iranshahy, M., Soheili, V., & Fazly Bazzaz, B. S. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1), 1-28. DOI: https://doi.org/10.1186/s13756-019-0559-6
  28. Kumar, L., Bisen, M., Harjai, K., Chhibber, S., Azizov, S., Lalhlenmawia, H., & Kumar, D. (2023). Advances in Nanotechnology for Biofilm Inhibition. ACS omega. DOI: https://doi.org/10.1021/acsomega.3c02239
  29. Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano today, 10(3), 339-354. DOI: https://doi.org/10.1016/j.nantod.2015.04.002
  30. Lee, H., Woo, E. R., & Lee, D. G. (2018). Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS yeast research, 18(1), foy003. DOI: https://doi.org/10.1093/femsyr/foy003
  31. Lee, J., & Lee, D. G. (2015). Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. Current microbiology, 70, 383-389. DOI: https://doi.org/10.1007/s00284-014-0734-1
  32. Lee, W., & Lee, D. G. (2018). Potential role of potassium and chloride channels in regulation of silymarin‐induced apoptosis in Candida albicans. IUBMB life, 70(3), 197-206. DOI: https://doi.org/10.1002/iub.1716
  33. Li, L., Sun, X., Zhao, D., & Dai, H. (2021). Pharmacological applications and action mechanisms of phytochemicals as alternatives to antibiotics in pig production. Frontiers in Immunology, 12, 798553. DOI: https://doi.org/10.3389/fimmu.2021.798553
  34. Li, X., Sun, L., Zhang, P., & Wang, Y. (2021). Novel approaches to combat medical device-associated biofilms. Coatings, 11(3), 294. DOI: https://doi.org/10.3390/coatings11030294
  35. Lin, Y. K., Yang, S. C., Hsu, C. Y., Sung, J. T., & Fang, J. Y. (2021). The antibiofilm nanosystems for improved infection inhibition of microbes in skin. Molecules, 26(21), 6392. DOI: https://doi.org/10.3390/molecules26216392
  36. Lindberg Madsen, H., Møller Andersen, C., Viborg Jørgensen, L., & Skibsted, L. H. (2000). Radical scavenging by dietary flavonoids. A kinetic study of antioxidant efficiencies. European food research and technology, 211, 240-246. DOI: https://doi.org/10.1007/s002170000189
  37. Longano, D., Ditaranto, N., Sabbatini, L., Torsi, L., & Cioffi, N. (2012). Synthesis and antimicrobial activity of copper nanomaterials. Nano-antimicrobials: progress and prospects, 85-117. DOI: https://doi.org/10.1007/978-3-642-24428-5_3
  38. Mączka, W., Twardawska, M., Grabarczyk, M., & Wińska, K. (2023). Carvacrol—A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics, 12(5), 824. DOI: https://doi.org/10.3390/antibiotics12050824
  39. Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., ... & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food chemistry, 210, 402-414. DOI: https://doi.org/10.1016/j.foodchem.2016.04.111
  40. Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., ... & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food chemistry: X, 13, 100217. DOI: https://doi.org/10.1016/j.fochx.2022.100217
  41. Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4(2), 119-128. DOI: https://doi.org/10.4161/viru.22913
  42. Meenambiga, S. S., Venkataraghavan, R., & Biswal, R. A. (2018). In silico analysis of plant phytochemicals against secreted aspartic proteinase enzyme of Candida albicans. Journal of Applied Pharmaceutical Science, 8(11), 140-150. DOI: https://doi.org/10.7324/JAPS.2018.81120
  43. Mishra, R., Panda, A. K., De Mandal, S., Shakeel, M., Bisht, S. S., & Khan, J. (2020). Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Frontiers in microbiology, 11, 566325. DOI: https://doi.org/10.3389/fmicb.2020.566325
  44. Mishra, S., Singh, S., & Misra, K. (2017). Restraining pathogenicity in Candida albicans by taxifolin as an inhibitor of Ras1-pka pathway. Mycopathologia, 182, 953-965. DOI: https://doi.org/10.1007/s11046-017-0170-4
  45. Murciano, C., Moyes, D. L., Runglall, M., Tobouti, P., Islam, A., Hoyer, L. L., & Naglik, J. R. (2012). Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PloS one, 7(3), e33362. DOI: https://doi.org/10.1371/journal.pone.0033362
  46. Murugesh, J., Annigeri, R. G., Mangala, G. K., Mythily, P. H., & Chandrakala, J. (2019). Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study. Journal of oral and maxillofacial pathology: JOMFP, 23(2), 305. DOI: https://doi.org/10.4103/jomfp.JOMFP_200_18
  47. Naglik, J. R., Challacombe, S. J., & Hube, B. (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and molecular biology reviews, 67(3), 400-428. DOI: https://doi.org/10.1128/MMBR.67.3.400-428.2003
  48. Naglik, J. R., Moyes, D. L., Wächtler, B., & Hube, B. (2011). Candida albicans interactions with epithelial cells and mucosal immunity. Microbes and infection, 13(12-13), 963-976. DOI: https://doi.org/10.1016/j.micinf.2011.06.009
  49. Narayanan, V. S., Muddaiah, S., Shashidara, R., Sudheendra, U. S., Deepthi, N. C., & Samaranayake, L. (2020). Variable antifungal activity of curcumin against planktonic and biofilm phase of different candida species. Indian Journal of Dental Research, 31(1), 145-148. DOI: https://doi.org/10.4103/ijdr.IJDR_521_17
  50. Nobile, C. J., Nett, J. E., Hernday, A. D., Homann, O. R., Deneault, J. S., Nantel, A., ... & Mitchell, A. P. (2009). Biofilm matrix regulation by Candida albicans Zap1. PLoS biology, 7(6), e1000133. DOI: https://doi.org/10.1371/journal.pbio.1000133
  51. Ozdal, M., & Gurkok, S. (2022). Recent advances in nanoparticles as antibacterial agent. ADMET and DMPK, 10(2), 115-129. DOI: https://doi.org/10.5599/admet.1172
  52. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., ... & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(1), 1-33. DOI: https://doi.org/10.1186/s12951-018-0392-8
  53. Pinto, T., Aires, A., Cosme, F., Bacelar, E., Morais, M. C., Oliveira, I., ... & Gonçalves, B. (2021). Bioactive (poly) phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods, 10(1), 106. DOI: https://doi.org/10.3390/foods10010106
  54. Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plants–a review. Phytomedicine Plus, 1(2), 100029. DOI: https://doi.org/10.1016/j.phyplu.2021.100029
  55. Qi, Y., Shang, L., Liao, Z., Su, H., Jing, H., Wu, B., ... & Jia, Y. (2019). Intracerebroventricular injection of resveratrol ameliorated Aβ-induced learning and cognitive decline in mice. Metabolic Brain Disease, 34, 257-266. DOI: https://doi.org/10.1007/s11011-018-0348-6
  56. Rocha, M. F. G., Sales, J. A., da Rocha, M. G., Galdino, L. M., de Aguiar, L., Pereira-Neto, W. D. A., ... & Brilhante, R. S. N. (2019). Antifungal effects of the flavonoids kaempferol and quercetin: A possible alternative for the control of fungal biofilms. Biofouling, 35(3), 320-328. DOI: https://doi.org/10.1080/08927014.2019.1604948
  57. Roy, A., Khan, A., Ahmad, I., Alghamdi, S., Rajab, B. S., Babalghith, A. O., ... & Islam, M. R. (2022). Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Research International, 2022. DOI: https://doi.org/10.1155/2022/5445291
  58. Sabino, R., Veríssimo, C., Pereira, Á. A., & Antunes, F. (2020). Candida auris, an agent of hospital-associated outbreaks: which challenging issues do we need to have in mind?. Microorganisms, 8(2), 181. DOI: https://doi.org/10.3390/microorganisms8020181
  59. Satala, D., Karkowska-Kuleta, J., Zelazna, A., Rapala-Kozik, M., & Kozik, A. (2020). Moonlighting proteins at the candidal cell surface. Microorganisms, 8(7), 1046. DOI: https://doi.org/10.3390/microorganisms8071046
  60. Sato, M., Tanaka, H., Yamaguchi, R., Oh‐Uchi, T., & Etoh, H. (2003). Erythrina poeppigiana‐derived phytochemical exhibiting antimicrobial activity against Candida albicans and methicillin‐resistant Staphylococcus aureus. Letters in applied microbiology, 37(1), 81-85. DOI: https://doi.org/10.1046/j.1472-765X.2003.01352.x
  61. Satoh, K., Makimura, K., Hasumi, Y., Nishiyama, Y., Uchida, K., & Yamaguchi, H. (2009). Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiology and immunology, 53(1), 41-44. DOI: https://doi.org/10.1111/j.1348-0421.2008.00083.x
  62. Saxena, P., Joshi, Y., Rawat, K., & Bisht, R. (2019). Biofilms: architecture, resistance, quorum sensing and control mechanisms. Indian journal of microbiology, 59, 3-12. DOI: https://doi.org/10.1007/s12088-018-0757-6
  63. Setchell, K. D., Clerici, C., Lephart, E. D., Cole, S. J., Heenan, C., Castellani, D., ... & Heubi, J. E. (2005). S-equol, a potent ligand for estrogen receptor β, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. The American journal of clinical nutrition, 81(5), 1072-1079. DOI: https://doi.org/10.1093/ajcn/81.5.1072
  64. Shariati, A., Didehdar, M., Razavi, S., Heidary, M., Soroush, F., & Chegini, Z. (2022). Natural compounds: A hopeful promise as an antibiofilm agent against Candida species. Frontiers in Pharmacology, 13, 917787. DOI: https://doi.org/10.3389/fphar.2022.917787
  65. Shevelev, A. B., La Porta, N., Isakova, E. P., Martens, S., Biryukova, Y. K., Belous, A. S., ... & Deryabina, Y. I. (2020). In vivo antimicrobial and wound-healing activity of resveratrol, dihydroquercetin, and dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Pathogens, 9(4), 296. DOI: https://doi.org/10.3390/pathogens9040296
  66. Singh, K., & Marangoni, D. (2010). Microcalorimetric determination of effect of the antioxidant (Quercetin) on polymer/surfactant interactions. Journal of thermal analysis and calorimetry, 102(2), 729-737. DOI: https://doi.org/10.1007/s10973-010-0864-z
  67. Sirari, P., Anand, J., Devrat, A.T., & Rai, N. (2021). Green tea phytocompounds targets Lansterol 14-alpha demethylase against ergosterol biosynthesis in Candida glabrata.
  68. Sirari, P., Anand , J., Tyagi, M., Baccheti, R.K., Thapliyal ,A., & Rai, N. (2023). Antimycotic activity of green tea phytocompounds against Candida glabrata. Environment Conservation Journal, 24(3),268-273. DOI: https://doi.org/10.36953/ECJ.26042341
  69. Staab, J. F., Bradway, S. D., Fidel, P. L., & Sundstrom, P. (1999). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 283(5407), 1535-1538. DOI: https://doi.org/10.1126/science.283.5407.1535
  70. Sudbery, P., Gow, N., & Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends in microbiology, 12(7), 317-324. DOI: https://doi.org/10.1016/j.tim.2004.05.008
  71. Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans—the virulence factors and clinical manifestations of infection. Journal of Fungi, 7(2), 79. DOI: https://doi.org/10.3390/jof7020079
  72. Thambirajoo, M., Maarof, M., Lokanathan, Y., Katas, H., Ghazalli, N. F., Tabata, Y., & Fauzi, M. B. (2021). Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics, 10(11), 1338. DOI: https://doi.org/10.3390/antibiotics10111338
  73. Theiss, S., Ishdorj, G., Brenot, A., Kretschmar, M., Lan, C. Y., Nichterlein, T., ... & Köhler, G. A. (2006). Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. International Journal of Medical Microbiology, 296(6), 405-420. DOI: https://doi.org/10.1016/j.ijmm.2006.03.003
  74. Turner, S. A., & Butler, G. (2014). The Candida pathogenic species complex. Cold Spring Harbor perspectives in medicine, 4(9). DOI: https://doi.org/10.1101/cshperspect.a019778
  75. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10), 2041. DOI: https://doi.org/10.3390/microorganisms9102041
  76. Varier, K. M., Gudeppu, M., Chinnasamy, A., Thangarajan, S., Balasubramanian, J., Li, Y., & Gajendran, B. (2019). Nanoparticles: antimicrobial applications and its prospects. Advanced nanostructured materials for environmental remediation, 321-355. DOI: https://doi.org/10.1007/978-3-030-04477-0_12
  77. Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology and Research, 3(4), 200-201. DOI: https://doi.org/10.4103/2231-4040.104709
  78. Ventola, C. L. (2012). The nanomedicine revolution: part 1: emerging concepts. Pharmacy and Therapeutics, 37(9), 512.
  79. Verstrepen, K. J., & Klis, F. M. (2006). Flocculation, adhesion and biofilm formation in yeasts. Molecular microbiology, 60(1), 5-15. DOI: https://doi.org/10.1111/j.1365-2958.2006.05072.x
  80. Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2), 59. DOI: https://doi.org/10.3390/antibiotics9020059
  81. Vikrant, P., Priya, J., & Nirichan, K. B. (2015). Plants with anti-Candida activity and their mechanism of action: a review. Journal of Environmental Research and Development, 9(4), 1189.
  82. Vitiello, A., Ferrara, F., Boccellino, M., Ponzo, A., Cimmino, C., Comberiati, E., ... & Sabbatucci, M. (2023). Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines, 11(4), 1063. DOI: https://doi.org/10.3390/biomedicines11041063
  83. Wang, M., Firrman, J., Liu, L., & Yam, K. (2019). A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. BioMed research international, 2019. DOI: https://doi.org/10.1155/2019/7010467
  84. Ying, S., & Chunyang, L. (2012). Correlation between phospholipase of Candida albicans and resistance to fluconazole. Mycoses, 55(1), 50-55. DOI: https://doi.org/10.1111/j.1439-0507.2011.02024.x
  85. Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559. DOI: https://doi.org/10.3390/molecules21050559
  86. Yue, D., Zheng, D., Bai, Y., Yang, L., Yong, J., & Li, Y. (2024). Insights into the anti‐Candida albicans properties of natural phytochemicals: An in vitro and in vivo investigation. Phytotherapy Research. DOI: https://doi.org/10.1002/ptr.8148
  87. Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., & Bahadar, K. (2018). Role of secondary metabolites in plant defense against pathogens. Microbial pathogenesis, 124, 198-202. DOI: https://doi.org/10.1016/j.micpath.2018.08.034
  88. Zhuang, W. B., Li, Y. H., Shu, X. C., Pu, Y. T., Wang, X. J., Wang, T., & Wang, Z. (2023). The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules, 28(8), 3599. DOI: https://doi.org/10.3390/molecules28083599