Main Article Content
Abstract
A substantial portion of the worldwide population relies on wheat as a foundational dietary staple. However, the increased occurrence and severity of drought and heat stress events due to climate change pose significant threats to wheat production. The physiological and biochemical responses of wheat to drought and heat stress (HS) varied and had unfavorable impacts on plant growth, as well as grain yield and quality. Understanding these responses is crucial for developing effective mitigation strategies. The high temperature during grain synthesis alters the synthesis and proportion of major chemical constituents in the grain, thereby affecting its functionality and suitability for processing into various products. Developing drought-tolerant and heat-resistant wheat varieties through marker-assisted breeding and genetic engineering are two modern strategies that effectively combat temperature stress. Additionally, agronomic practices such as improved irrigation methods, crop rotation, and precision farming are common approaches to enhance wheat resilience under stress conditions. This review serves as a valuable resource for researchers, agronomists, policymakers, and processors by providing a comprehensive overview of the effects of drought and HS on wheat growth and its grain quality and by offering insights into promising strategies for sustainable wheat production and its processing. Adapting and implementing these strategies are essential steps towards ensuring global food security, safeguarding the livelihoods of wheat-growing farmers, and shedding light on changes in the composition and functionality of wheat grain that are useful for the food industry.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for sustainable development, 37, 1-17. DOI: https://doi.org/10.1007/s13593-017-0443-9
- Al-Karaki, G. N. (2012). Phenological development-yield relationships in durum wheat cultivars under late-season high-temperature stress in a semiarid environment. International scholarly research notices, 2012. DOI: https://doi.org/10.5402/2012/456856
- Al-Khatib, K., and G. M. Paulsen, 1984: Mode of high temperature injury to wheat during grain development. Plant Physiol. 61, 363–368. DOI: https://doi.org/10.1111/j.1399-3054.1984.tb06341.x
- Asseng, S., & Milroy, S. P. (2006). Simulation of environmental and genetic effects on grain protein concentration in wheat. European Journal of Agronomy, 25(2), 119-128. DOI: https://doi.org/10.1016/j.eja.2006.04.005
- Asseng, S., Foster, I. A. N., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997-1012. DOI: https://doi.org/10.1111/j.1365-2486.2010.02262.x
- Asthir, B. (2015a). Mechanisms of heat tolerance in crop plants. Biologia plantarum, 59, 620-628. DOI: https://doi.org/10.1007/s10535-015-0539-5
- Asthir, B. (2015b). Protective mechanisms of heat tolerance in crop plants. Journal of Plant Interactions, 10(1), 202-210. DOI: https://doi.org/10.1080/17429145.2015.1067726
- Balla, K., Bedő, Z., & Veisz, O. (2007). Heat stress induced changes in the activity of antioxidant enzymes in wheat. Cereal Research Communications, 35(2), 197-200. DOI: https://doi.org/10.1556/CRC.35.2007.2.8
- Balla, K., Bencze, S., Janda, T., & Veisz, O. (2009). Analysis of heat stress tolerance in winter wheat. Acta Agronomica Hungarica, 57(4), 437-444. DOI: https://doi.org/10.1556/AAgr.57.2009.4.6
- Balla, K., Karsai, I., Kiss, T., Bencze, S., Bedő, Z., & Veisz, O. (2012). Productivity of a doubled haploid winter wheat population under heat stress. Central European Journal of Biology, 7, 1084-1091. DOI: https://doi.org/10.2478/s11535-012-0097-1
- Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11-38. DOI: https://doi.org/10.1111/j.1365-3040.2007.01727.x
- Battenfield, S. D., Guzmán, C., Gaynor, R. C., Singh, R. P., Peña, R. J., Dreisigacker, S., ... & Poland, J. A. (2016). Genomic selection for processing and end‐use quality traits in the CIMMYT spring bread wheat breeding program. The plant genome, 9(2), plantgenome2016-01. DOI: https://doi.org/10.3835/plantgenome2016.01.0005
- Bedford, M. A., & Schulze, H. (1998). Exogenous enzymes for pigs and poultry. Nutrition research reviews, 11(1), 91-114. DOI: https://doi.org/10.1079/NRR19980007
- Bencze, S., Veisz, O., & Bedő, Z. (2004). Effects of high atmospheric CO 2 and heat stress on phytomass, yield and grain quality of winter wheat. Cereal Research Communications, 32, 75-82. DOI: https://doi.org/10.1007/BF03543283
- Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K. M., & Lee, I. J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143, 111931. DOI: https://doi.org/10.1016/j.indcrop.2019.111931
- Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. DOI: https://doi.org/10.3389/fpls.2013.00273
- Blumenthal, C., Bekes, F., Gras, P. W., Barlow, E. R., & Wrigley, C. W. (1995). Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chemistry, 72(6), 539-544.
- Bolhàr-Nordenkampf, H. R., & Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and production in a changing environment: a field and laboratory manual (pp. 193-206). Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-94-011-1566-7_12
- Borghi, B., Corbellini, M., Ciaffi, M., Lafiandra, D., Stefanis, E., Sgrulletta, D., & Di, F. N. (1995). Effect of heat shock during grain filling on grain quality of bread and durum wheats. Australian Journal of Agricultural Research, 46(7), 1365-1380. DOI: https://doi.org/10.1071/AR9951365
- Brestic, M., Zivcak, M., Kunderlikova, K., & Allakhverdiev, S. I. (2016). High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynthesis Research, 130, 251-266. DOI: https://doi.org/10.1007/s11120-016-0249-7
- Brites, C., & Carrillo, J. M. (2001). Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu‐1 and Glu‐3 loci on durum wheat quality. Cereal Chemistry, 78(1), 59-63. DOI: https://doi.org/10.1094/CCHEM.2001.78.1.59
- Brown, A., & Rieseberg, L. (2006). Genetic features of populations from stress-prone environments. In Enhancing the use of crop genetic diversity to manage abiotic stress in agricultural production systems. Proceedings of a workshop, Budapest, Hungary, 23-27 May, 2005 (pp. 2-10). International Plant Genetic Resources Institute (IPGRI).
- Calderini, D. F., & Ortiz‐Monasterio, I. (2003). Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Science, 43(1), 141-151. DOI: https://doi.org/10.2135/cropsci2003.1410
- Chakraborty, D., Nagarajan, S., Aggarwal, P., Gupta, V. K., Tomar, R. K., Garg, R. N., ... & Kalra, N. (2008). Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural Water Management, 95(12), 1323-1334. DOI: https://doi.org/10.1016/j.agwat.2008.06.001
- Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change—opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251-268. DOI: https://doi.org/10.1071/CP11303
- Chauhan, S., Srivalli, S., Nautiyal, A.R. et al. Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 47, 536–547 (2009). DOI: https://doi.org/10.1007/s11099-009-0079-3
- Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany, 103(4), 551-560. DOI: https://doi.org/10.1093/aob/mcn125
- Chen, S. Y., Zhang, X. Y., Pei, D., Sun, H. Y., & Chen, S. L. (2007). Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Annals of Applied Biology, 150(3), 261-268. DOI: https://doi.org/10.1111/j.1744-7348.2007.00144.x
- Chinnusamy, V., & Khanna‐Chopra, R. (2003). Effect of heat stress on grain starch content in diploid, tetraploid and hexaploid wheat species. Journal of agronomy and crop science, 189(4), 242-249. DOI: https://doi.org/10.1046/j.1439-037X.2003.00036.x
- Ciaffi, M., Tozzi, L., Borghi, B., Corbellini, M., & Lafiandra, D. (1996). Effect of heat shock during grain filling on the gluten protein composition of bread wheat. Journal of Cereal Science, 24(2), 91-100. DOI: https://doi.org/10.1006/jcrs.1996.0042
- Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., Wright, J., ... & Clark, M. D. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome research, 27(5), 885-896. DOI: https://doi.org/10.1101/gr.217117.116
- Corbellini, M., Canevar, M. G., Mazza, L., Ciaffi, M., Lafiandra, D., & Borghi, B. (1997). Effect of the duration and intensity of heat shock during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Functional Plant Biology, 24(2), 245-260. DOI: https://doi.org/10.1071/PP96067
- Cossani, C. M., & Reynolds, M. P. (2015). Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Science, 55(6), 2719-2735. DOI: https://doi.org/10.2135/cropsci2015.02.0092
- Courtin, C. M., & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science, 35(3), 225-243. DOI: https://doi.org/10.1006/jcrs.2001.0433
- Daniel, C., & Triboi, E. (2000). Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: effects on gliadin content and composition. Journal of Cereal Science, 32(1), 45-56. DOI: https://doi.org/10.1006/jcrs.2000.0313
- Daniel, C., & Triboi, E. (2002). Changes in wheat protein aggregation during grain development: effects of temperatures and water stress. European Journal of Agronomy, 16(1), 1-12. DOI: https://doi.org/10.1016/S1161-0301(01)00114-9
- De Stefanis, E., Sgrulletta, D., De Vita, P., & Pucciarmati, S. (2002). Genetic variability to the effects of heat stress during grain filling on durum wheat quality. Cereal Research Communications, 30, 117-124. DOI: https://doi.org/10.1007/BF03543398
- Dias, A. S., & Lidon, F. C. (2009). Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. Journal of Agronomy and Crop Science, 195(2), 137-147. DOI: https://doi.org/10.1111/j.1439-037X.2008.00347.x
- Dias, A. S., & Lidon, F. C. (2010). Bread and durum wheat tolerance under heat stress: A synoptical overview. Emirates Journal of Food and Agriculture, 412-436. DOI: https://doi.org/10.9755/ejfa.v22i6.4660
- Don, C., Lookhart, G., Naeem, H., MacRitchie, F., & Hamer, R. J. (2005). Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science, 42(1), 69-80. DOI: https://doi.org/10.1016/j.jcs.2005.01.005
- Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29, 67-79. DOI: https://doi.org/10.1007/s00497-016-0275-9
- Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491-507. DOI: https://doi.org/10.1080/07352689.2011.615687
- Ferreira, M. S., Martre, P., Mangavel, C., Girousse, C., Rosa, N. N., Samson, M. F., & Morel, M. H. (2012). Physicochemical control of durum wheat grain filling and glutenin polymer assembly under different temperature regimes. Journal of Cereal Science, 56(1), 58-66. DOI: https://doi.org/10.1016/j.jcs.2011.11.001
- Flagella, Z., Giuliani, M. M., Giuzio, L., Volpi, C., & Masci, S. (2010). Influence of water deficit on durum wheat storage protein composition and technological quality. European Journal of Agronomy, 33(3), 197-207. DOI: https://doi.org/10.1016/j.eja.2010.05.006
- Fokar, M., Blum, A., & Nguyen, H. T. (1998). Heat tolerance in spring wheat. II. Grain filling. Euphytica, 104, 9-15. DOI: https://doi.org/10.1023/A:1018322502271
- Forster, S. M., Ransom, J. K., Manthey, F. A., Rickertsen, J. R., & Mehring, G. H. (2017). Planting date, seeding rate, and cultivar impact agronomic traits and semolina of durum wheat. American Journal of Plant Sciences, 8(09), 2040. DOI: https://doi.org/10.4236/ajps.2017.89137
- Foulkes, M. J., Sylvester-Bradley, R., Weightman, R., & Snape, J. W. (2007). Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Research, 103(1), 11-24. DOI: https://doi.org/10.1016/j.fcr.2007.04.007
- Frederix, S. A., Van Hoeymissen, K. E., Courtin, C. M., & Delcour, J. A. (2004). Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten− starch separation. Journal of Agricultural and Food Chemistry, 52(26), 7950-7956. DOI: https://doi.org/10.1021/jf049041v
- Gebruers, K., Dornez, E., Bedo, Z., Rakszegi, M., Fras, A., Boros, D., ... & Delcour, J. A. (2010). Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 58(17), 9353-9361. DOI: https://doi.org/10.1021/jf100447g
- Georgieva, K. (1999). Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulgarian Journal of Plant Physiology, 25(3-4), 89-99.
- Gibson, L. R., & Paulsen, G. M. (1999). Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science, 39(6), 1841-1846. DOI: https://doi.org/10.2135/cropsci1999.3961841x
- Gooding, M. J., Ellis, R. H., Shewry, P. R., & Schofield, J. D. (2003). Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science, 37(3), 295-309. DOI: https://doi.org/10.1006/jcrs.2002.0501
- Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35, 1837-1842. DOI: https://doi.org/10.1007/s11738-013-1221-1
- Guttieri, M. J., Stark, J. C., O'Brien, K., & Souza, E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41(2), 327-335. DOI: https://doi.org/10.2135/cropsci2001.412327x
- Guy, C. L., Niemi, K. J., & Brambl, R. (1985). Altered gene expression during cold acclimation of spinach. Proceedings of the National Academy of Sciences, 82(11), 3673-3677. DOI: https://doi.org/10.1073/pnas.82.11.3673
- Guzmán, C., Autrique, J. E., Mondal, S., Singh, R. P., Govindan, V., Morales-Dorantes, A., ... & Peña, R. J. (2016). Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Research, 186, 157-165. DOI: https://doi.org/10.1016/j.fcr.2015.12.002
- Hakim, M. A., Hossain, A., Teixeira da Silva, J. A., Zvolinsky, V. P., & Khan, M. M. (2012). Yield, Protein and Starch Content of Twenty Wheat (Triticum aestivum L.) Genotypes Exposed to High Temperature under Late Sowing Conditions. Journal of Scientific Research, 4(2). DOI: https://doi.org/10.3329/jsr.v4i2.8679
- Hamam, K. A., & Khaled, A. G. A. (2009). Stability of wheat genotypes under different environments and their evaluation under sowing dates and nitrogen fertilizer levels. Australian Journal of Basic and Applied Sciences, 3(1), 206-217.
- Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684. DOI: https://doi.org/10.3390/ijms14059643
- Hernández-Espinosa, N., Mondal, S., Autrique, E., Gonzalez-Santoyo, H., Crossa, J., Huerta-Espino, J., & Guzmán, C. (2018). Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Research, 215, 104-112. DOI: https://doi.org/10.1016/j.fcr.2017.10.003
- Hong, B. H., Rubenthaler, G. L., & Allan, R. E. (1989). Wheat pentosans. I. Cultivar variation and relationship to kernel hardness. Cereal Chemistry, 66(5), 369-373.
- Hossain, A., Sarker, M. A. Z., Saifuzzaman, M., Teixeira da Silva, J. A., Lozovskaya, M. V., & Akhter, M. M. (2013). Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. International Journal of Plant Production, 7(3), 615-636.
- Hurkman, W. J., McCue, K. F., Altenbach, S. B., Korn, A., Tanaka, C. K., Kothari, K. M., ... & DuPont, F. M. (2003). Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 164(5), 873-881. DOI: https://doi.org/10.1016/S0168-9452(03)00076-1
- Hurkman, W. J., Vensel, W. H., Tanaka, C. K., Whitehand, L., & Altenbach, S. B. (2009). Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science, 49(1), 12-23. DOI: https://doi.org/10.1016/j.jcs.2008.06.014
- Ingvordsen, C. H., Gislum, R., Jørgensen, J. R., Mikkelsen, T. N., Stockmarr, A., & Jørgensen, R. B. (2016). Grain protein concentration and harvestable protein under future climate conditions. A study of 108 spring barley accessions. Journal of Experimental Botany, 67(8), 2151-2158. DOI: https://doi.org/10.1093/jxb/erw033
- Joshi, A. K., Mishra, B., Chatrath, R., Ortiz Ferrara, G., & Singh, R. P. (2007). Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica, 157, 431-446. DOI: https://doi.org/10.1007/s10681-007-9385-7
- Kajla, M., Yadav, V. K., Chhokar, R. S., & Sharma, R. K. (2015). Management practices to mitigate the impact of high temperature on wheat. Journal of Wheat Research, 7(1), 1-12. DOI: https://doi.org/10.31018/jans.v7i2.733
- Katyal, M., Singh, N., & Kaur, S. (2022). Physicochemical, thermal, and pasting properties of starch separated from various timely sown and delayed sown (heat stressed) wheat of different wheat lines/variety. Starch‐Stärke, 74(5-6), 2200003. DOI: https://doi.org/10.1002/star.202200003
- Kaur, A., Shevkani, K., Katyal, M., Singh, N., Ahlawat, A. K., & Singh, A. M. (2016). Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. Journal of Food Science and Technology, 53, 2127-2138. DOI: https://doi.org/10.1007/s13197-016-2202-3
- Kaur, A., Singh, N., Ahlawat, A. K., Kaur, S., Singh, A. M., Chauhan, H., & Singh, G. P. (2013). Diversity in grain, flour, dough and gluten properties amongst Indian wheat cultivars varying in high molecular weight subunits (HMW-GS). Food Research International, 53(1), 63-72. DOI: https://doi.org/10.1016/j.foodres.2013.03.009
- Kawasaki, K., & Uchida, S. (2016). Quality matters more than quantity: Asymmetric temperature effects on crop yield and quality grade. American Journal of Agricultural Economics, 98(4), 1195-1209. DOI: https://doi.org/10.1093/ajae/aaw036
- Labuschagne, M. T., Elago, O., & Koen, E. (2009). The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. Journal of Cereal Science, 49(2), 184-189. DOI: https://doi.org/10.1016/j.jcs.2008.09.001
- Laurentin, A., Morrison, D., & Edwards, C. (2003). Dietary fibre in health and disease. DOI: https://doi.org/10.1046/j.1467-3010.2003.00298.x
- Li, Y. F., Wu, Y., Hernandez-Espinosa, N., & Peña, R. J. (2013). Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters. Journal of Cereal Science, 57(3), 398-404. DOI: https://doi.org/10.1016/j.jcs.2013.01.005
- Limon‐Ortega, A., Sayre, K. D., & Francis, C. A. (2000). Wheat and maize yields in response to straw management and nitrogen under a bed planting system. Agronomy Journal, 92(2), 295-302. DOI: https://doi.org/10.2134/agronj2000.922295x
- Liu, H. C., Liao, H. T., & Charng, Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment, 34(5), 738-751. DOI: https://doi.org/10.1111/j.1365-3040.2011.02278.x
- Liu, S., Li, X., Larsen, D. H., Zhu, X., Song, F., & Liu, F. (2017). Drought priming at vegetative growth stage enhances nitrogen‐use efficiency under post‐anthesis drought and heat stress in wheat. Journal of Agronomy and Crop Science, 203(1), 29-40. DOI: https://doi.org/10.1111/jac.12190
- Lobell, D. B., Hammer, G. L., Chenu, K., Zheng, B., McLean, G., & Chapman, S. C. (2015). The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21(11), 4115-4127. DOI: https://doi.org/10.1111/gcb.13022
- Lopes, F. F. D. P., Lima, R. S., Risolia, P. H. B., Ispada, J., Assumpção, M. E. O., & Visintin, J. A. (2012). Heat stress induced alteration in bovine oocytes: functional and cellular aspects. Animal Reproduction, 395-403.
- Ludwig, F., & Asseng, S. (2010). Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agricultural Systems, 103(3), 127-136. DOI: https://doi.org/10.1016/j.agsy.2009.11.001
- Lynam, J. K. (2004). Science in improved farming systems: Reflections on the organization of crop research in the CGIAR. In 4th International Crop Science Congress.< http://www. cropscience. org. au/icsc2004/symposia/4/2/1333_lynamj. htm>(accessed 04.07).
- Machado, S., & Paulsen, G. M. (2001). Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant and Soil, 233, 179-187. DOI: https://doi.org/10.1023/A:1010346601643
- Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667-681. DOI: https://doi.org/10.1023/A:1014826730024
- Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580-585.
- Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. DOI: https://doi.org/10.1016/j.abb.2005.10.018
- Majoul-Haddad, T., Bancel, E., Martre, P., Triboi, E., & Branlard, G. (2013). Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. Journal of Cereal Science, 57(3), 486-495. DOI: https://doi.org/10.1016/j.jcs.2013.02.003
- Mengutay, M., Ceylan, Y., Kutman, U. B., & Cakmak, I. (2013). Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant and Soil, 368, 57-72. DOI: https://doi.org/10.1007/s11104-013-1761-6
- Modarresi, M., Mohammadi, V., Zali, A., & Mardi, M. (2010). Response of wheat yield and yield related traits to high temperature. Cereal Research Communications, 38(1), 23-31. DOI: https://doi.org/10.1556/CRC.38.2010.1.3
- Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R., ... & Joshi, A. K. (2013). Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Research, 151, 19-26. DOI: https://doi.org/10.1016/j.fcr.2013.06.015
- Mustafa, T., Sattar, A., Sher, A., Ul-Allah, S., Ijaz, M., Irfan, M., & Cheema, M. (2021). Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio-biochemical mechanisms. Scientific Reports, 11(1), 23170. DOI: https://doi.org/10.1038/s41598-021-02594-4
- Niwas, R., & Khichar, M. L. (2016). Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam, 67(1), 205-222. DOI: https://doi.org/10.54302/mausam.v67i1.1179
- Noohi, K., Fatahi, E., & Kamali, G. A. (2009, April). Heat stress effects analysis on wheat crop in southern provinces. In EGU General Assembly Conference Abstracts (p. 4441).
- Nuttall, J. G., O'leary, G. J., Panozzo, J. F., Walker, C. K., Barlow, K. M., & Fitzgerald, G. J. (2017). Models of grain quality in wheat—A review. Field Crops Research, 202, 136-145. DOI: https://doi.org/10.1016/j.fcr.2015.12.011
- Peck, A. W., & McDonald, G. K. (2010). Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil, 337, 355-374. DOI: https://doi.org/10.1007/s11104-010-0532-x
- Peterson, C. J., Graybosch, R. A., Shelton, D. R., & Baenziger, P. S. (1997). Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. In Wheat: Prospects for Global Improvement: Proceedings of the 5th International Wheat Conference, 10–14 June, 1996, Ankara, Turkey (pp. 223-228). Springer Netherlands. DOI: https://doi.org/10.1007/978-94-011-4896-2_30
- Pradhan, G. P., & Prasad, P. V. (2015). Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One, 10(2), e0116620. DOI: https://doi.org/10.1371/journal.pone.0116620
- Pradhan, G. P., Prasad, P. V., Fritz, A. K., Kirkham, M. B., & Gill, B. S. (2012). Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology, 39(3), 190-198. DOI: https://doi.org/10.1071/FP11245
- Prasad, P. V. V., Staggenborg, S. A., & Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes, 1, 301-355. DOI: https://doi.org/10.2134/advagricsystmodel1.c11
- Reynolds, M., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant Biology, 31, 162-171. DOI: https://doi.org/10.1016/j.pbi.2016.04.005
- Reynolds, M., Tattaris, M., Cossani, C. M., Ellis, M., Yamaguchi-Shinozaki, K., & Pierre, C. S. (2015). Exploring genetic resources to increase adaptation of wheat to climate change. In Advances in Wheat Genetics: From Genome to Field: Proceedings of the 12th International Wheat Genetics Symposium (pp. 355-368). Springer Japan. DOI: https://doi.org/10.1007/978-4-431-55675-6_41
- Seleiman, M. F., Ibrahim, M., Abdel-Aal, S., & Zahran, G. (2011). Effect of sowing dates on productivity, technological and rheological characteristics of bread wheat. Journal of Agro Crop Science, 2(1), 1-6.
- Semenov, M. A., & Halford, N. G. (2009). Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany, 60(10), 2791-2804. DOI: https://doi.org/10.1093/jxb/erp164
- Semenov, M. A., & Shewry, P. R. (2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports, 1(1), 66. DOI: https://doi.org/10.1038/srep00066
- Semenov, M. A., & Stratonovitch, P. (2013). Designing high‐yielding wheat ideotypes for a changing climate. Food and Energy Security, 2(3), 185-196. DOI: https://doi.org/10.1002/fes3.34
- Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257, 219-226. DOI: https://doi.org/10.1023/A:1026237816578
- Shah, N. H., & Paulsen, G. M. (2004). Injury to photosynthesis and productivity from interaction between high temperature and drought during maturation of wheat. Asian Journal of Plant Sciences, 4(1), 67-74. DOI: https://doi.org/10.3923/ajps.2005.67.74
- Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28(3), 269-277. DOI: https://doi.org/10.1111/j.1365-3040.2005.01324.x
- Sharma, A., Rawat, R., Verma, J., & Jaiswal, J. (2013). Correlation and heat susceptibility index analysis for terminal heat tolerance in bread wheat. Journal of Central European Agriculture. DOI: https://doi.org/10.5513/JCEA01/14.2.1233
- Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012. DOI: https://doi.org/10.1155/2012/217037
- Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537-1553. DOI: https://doi.org/10.1093/jxb/erp058
- Shewry, P. R., Freeman, J., Wilkinson, M., Pellny, T., & Mitchell, R. A. (2010). Challenges and opportunities for using wheat for biofuel production. Energy Crops, 13-26. DOI: https://doi.org/10.1039/9781849732048-00013
- Silva, E. N., Ferreira-Silva, S. L., de Vasconcelos Fontenele, A., Ribeiro, R. V., Viégas, R. A., & Silveira, J. A. G. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167(14), 1157-1164. DOI: https://doi.org/10.1016/j.jplph.2010.03.005
- Singh, A., Singh, D., Kang, J. S., & Aggarwal, N. (2011). Management practices to mitigate the impact of high temperature on wheat: a review. IIOABJ, 2(7), 11-22.
- Singh, N., Kaur, A., Katyal, M., Bhinder, S., Ahlawat, A. K., & Singh, A. M. (2016). Diversity in quality traits amongst Indian wheat varieties II: paste, dough and muffin making properties. Food Chemistry, 197, 316-324. DOI: https://doi.org/10.1016/j.foodchem.2015.10.035
- Singh, N., Virdi, A. S., Katyal, M., Kaur, A., Kaur, D., Ahlawat, A. K., ... & Sharma, R. K. (2021). Evaluation of heat stress through delayed sowing on physicochemical and functional characteristics of grains, whole meals and flours of India wheat. Food Chemistry, 344, 128725. DOI: https://doi.org/10.1016/j.foodchem.2020.128725
- Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21(2), 197-203. DOI: https://doi.org/10.1016/j.copbio.2010.03.002
- Smith, D. L., & Almaraz, J. J. (2004). Climate change and crop production: contributions, impacts, and adaptations. Canadian Journal of Plant Pathology, 26(3), 253-266. DOI: https://doi.org/10.1080/07060660409507142
- Soh, H. N., Sissons, M. J., & Turner, M. A. (2006). Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chemistry, 83(5), 513-519. DOI: https://doi.org/10.1094/CC-83-0513
- Spiertz, J. H. J., Hamer, R. J., Xu, H., Primo-Martin, C., Don, C., & Van Der Putten, P. E. L. (2006). Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. European Journal of Agronomy, 25(2), 89-95. DOI: https://doi.org/10.1016/j.eja.2006.04.012
- Stone, P. J., & Nicolas, M. E. (1994). Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology, 21(6), 887-900. DOI: https://doi.org/10.1071/PP9940887
- Stone, P. J., & Nicolas, M. E. (1995). Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. I. Grain growth. Functional Plant Biology, 22(6), 927-934. DOI: https://doi.org/10.1071/PP9950927
- Stone, P. J., Gras, P. W., & Nicolas, M. E. (1997). The influence of recovery temperature on the effects of a brief heat shock on wheat. III. Grain protein composition and dough properties. Journal of Cereal Science, 25(2), 129-141. DOI: https://doi.org/10.1006/jcrs.1996.0080
- Streck, N. A. (2005). Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 35, 730-740. DOI: https://doi.org/10.1590/S0103-84782005000300041
- Tahir, I. S. A., & Nakata, N. (2005). Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. Journal of Agronomy and Crop Science, 191(2), 106-115. DOI: https://doi.org/10.1111/j.1439-037X.2004.00127.x
- Tahir, I. S., Nakata, N., Ali, A. M., Mustafa, H. M., Saad, A. S. I., Takata, K., & Abdalla, O. S. (2006). Genotypic and temperature effects on wheat grain yield and quality in a hot irrigated environment. Plant Breeding, 125(4), 323-330. DOI: https://doi.org/10.1111/j.1439-0523.2006.01236.x
- Talukder, A. S. M. H. M., McDonald, G. K., & Gill, G. S. (2013). Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Research, 147, 1-11. DOI: https://doi.org/10.1016/j.fcr.2013.03.013
- Talukder, A. S. M. H., Gill, G., McDonald, G., Hayman, P., Alexander, B., Dove, H., & Culvenor, R. A. (2010, November). Field evaluation of sensitivity of wheat to high temperature stress near flowering and early grain set. In 15th ASA Conference (pp. 15-19).
- Tashiro, T., & Wardlaw, I. F. (1990). The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Functional Plant Biology, 17(5), 551-561. DOI: https://doi.org/10.1071/PP9900551
- Telfer, P., Edwards, J., Bennett, D., Ganesalingam, D., Able, J., & Kuchel, H. (2018). A field and controlled environment evaluation of wheat (Triticum aestivum) adaptation to heat stress. Field Crops Research, 229, 55-65. DOI: https://doi.org/10.1016/j.fcr.2018.09.013
- Telfer, P., Edwards, J., Kuchel, H., Reinheimer, J., & Bennett, D. (2013). Heat stress tolerance of wheat. Grains Research and Development Corporation: Barton, ACT) Available at: http://www. grdc. com. au/Research-and-Development/GRDC-Update-Papers/2013/02/Heat-stress-tolerance-of-wheat [Verified 16 May 2016].
- Toole, G. A., Wilson, R. H., Parker, M. L., Wellner, N. K., Wheeler, T. R., Shewry, P. R., & Mills, E. N. C. (2007). The effect of environment on endosperm cell-wall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study. Planta, 225, 1393-1403. DOI: https://doi.org/10.1007/s00425-006-0448-0
- Triboi, E., & Triboi-Blondel, A. M. (2002). Productivity and grain or seed composition: a new approach to an old problem. European Journal of Agronomy, 16(3), 163-186. DOI: https://doi.org/10.1016/S1161-0301(01)00146-0
- Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Žalud, Z., & Semenov, M. A. (2014). Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change, 4(7), 637-643. DOI: https://doi.org/10.1038/nclimate2242
- Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H., & Farooq, M. (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science, 208(1), 1-17. DOI: https://doi.org/10.1111/jac.12572
- Ullah, S., Bramley, H., Mahmood, T., & Trethowan, R. (2020). A strategy of ideotype development for heat‐tolerant wheat. Journal of Agronomy and Crop Science, 206(2), 229-241. DOI: https://doi.org/10.1111/jac.12378
- Upreti, K. K., & Sharma, M. (2016). Role of plant growth regulators in abiotic stress tolerance. Abiotic Stress Physiology of Horticultural Crops, 19-46. DOI: https://doi.org/10.1007/978-81-322-2725-0_2
- Viswanathan, C., & Khanna‐Chopra, R. (2001). Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. Journal of Agronomy and Crop Science, 186(1), 1-7. DOI: https://doi.org/10.1046/j.1439-037x.2001.00432.x
- Wahid, A., Farooq, M., Hussain, I., Rasheed, R., Galani, S. (2012). Responses and Management of Heat Stress in Plants. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_6 DOI: https://doi.org/10.1007/978-1-4614-0815-4_6
- Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67. DOI: https://doi.org/10.3389/fpls.2016.00067
- Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14. DOI: https://doi.org/10.1007/s00425-003-1105-5
- Waraich, E. A., Ahmad, R., Ashraf, M. Y., Saifullah, & Ahmad, M. (2011). Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 61(4), 291-304. DOI: https://doi.org/10.1080/09064710.2010.491954
- Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition, 12(2), 221-244. DOI: https://doi.org/10.4067/S0718-95162012000200003
- Wardlaw, I. F., & Wrigley, C. W. (1994). Heat tolerance in temperate cereals: an overview. Functional Plant Biology, 21(6), 695-703. DOI: https://doi.org/10.1071/PP9940695
- Wrigley, C. W., Blumenthal, C., Gras, P. W., & Barlow, E. W. R. (1994). Temperature variation during grain filling and changes in wheat-grain quality. Functional Plant Biology, 21(6), 875-885. DOI: https://doi.org/10.1071/PP9940875
- Yan, S. H., Yin, Y. P., Li, W. Y., Li, Y., Liang, T. B., Wu, Y. H., ... & Wang, Z. L. (2008). Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecologica Sinica, 28(12), 6138-6147.
- Zhang, B., Liu, W., Chang, S. X., & Anyia, A. O. (2010). Water-deficit and high temperature affected water use efficiency and arabinoxylan concentration in spring wheat. Journal of Cereal Science, 52(2), 263-269. DOI: https://doi.org/10.1016/j.jcs.2010.05.014
- Zhang, X. Y., Chen, S. Y., Pei, D., Liu, M. Y., & Sun, H. Y. (2005). Evapotranspiration, yield and crop coefficient of irrigated maize under straw mulch. Pedosphere, 15(5), 576-584.
- Zhang, X., Cai, J., Wollenweber, B., Liu, F., Dai, T., Cao, W., & Jiang, D. (2013). Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science, 57(1), 134-140. DOI: https://doi.org/10.1016/j.jcs.2012.10.010
- Zhang, X., Shi, Z., Jiang, D., Högy, P., & Fangmeier, A. (2019). Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains. Food Chemistry, 277, 524-530. DOI: https://doi.org/10.1016/j.foodchem.2018.11.010
- Zhao, Y., Yokota, K., Ayada, K., Yamamoto, Y., Okada, T., Shen, L., & Oguma, K. (2007). Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR) 2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. Journal of Medical Microbiology, 56(2), 154-164. DOI: https://doi.org/10.1099/jmm.0.46882-0
- Zheng, B., Chenu, K., Fernanda Dreccer, M., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for A ustralian bread wheat (T riticum aestivium) varieties?. Global Change Biology, 18(9), 2899-2914. DOI: https://doi.org/10.1111/j.1365-2486.2012.02724.x
References
Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for sustainable development, 37, 1-17. DOI: https://doi.org/10.1007/s13593-017-0443-9
Al-Karaki, G. N. (2012). Phenological development-yield relationships in durum wheat cultivars under late-season high-temperature stress in a semiarid environment. International scholarly research notices, 2012. DOI: https://doi.org/10.5402/2012/456856
Al-Khatib, K., and G. M. Paulsen, 1984: Mode of high temperature injury to wheat during grain development. Plant Physiol. 61, 363–368. DOI: https://doi.org/10.1111/j.1399-3054.1984.tb06341.x
Asseng, S., & Milroy, S. P. (2006). Simulation of environmental and genetic effects on grain protein concentration in wheat. European Journal of Agronomy, 25(2), 119-128. DOI: https://doi.org/10.1016/j.eja.2006.04.005
Asseng, S., Foster, I. A. N., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997-1012. DOI: https://doi.org/10.1111/j.1365-2486.2010.02262.x
Asthir, B. (2015a). Mechanisms of heat tolerance in crop plants. Biologia plantarum, 59, 620-628. DOI: https://doi.org/10.1007/s10535-015-0539-5
Asthir, B. (2015b). Protective mechanisms of heat tolerance in crop plants. Journal of Plant Interactions, 10(1), 202-210. DOI: https://doi.org/10.1080/17429145.2015.1067726
Balla, K., Bedő, Z., & Veisz, O. (2007). Heat stress induced changes in the activity of antioxidant enzymes in wheat. Cereal Research Communications, 35(2), 197-200. DOI: https://doi.org/10.1556/CRC.35.2007.2.8
Balla, K., Bencze, S., Janda, T., & Veisz, O. (2009). Analysis of heat stress tolerance in winter wheat. Acta Agronomica Hungarica, 57(4), 437-444. DOI: https://doi.org/10.1556/AAgr.57.2009.4.6
Balla, K., Karsai, I., Kiss, T., Bencze, S., Bedő, Z., & Veisz, O. (2012). Productivity of a doubled haploid winter wheat population under heat stress. Central European Journal of Biology, 7, 1084-1091. DOI: https://doi.org/10.2478/s11535-012-0097-1
Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment, 31(1), 11-38. DOI: https://doi.org/10.1111/j.1365-3040.2007.01727.x
Battenfield, S. D., Guzmán, C., Gaynor, R. C., Singh, R. P., Peña, R. J., Dreisigacker, S., ... & Poland, J. A. (2016). Genomic selection for processing and end‐use quality traits in the CIMMYT spring bread wheat breeding program. The plant genome, 9(2), plantgenome2016-01. DOI: https://doi.org/10.3835/plantgenome2016.01.0005
Bedford, M. A., & Schulze, H. (1998). Exogenous enzymes for pigs and poultry. Nutrition research reviews, 11(1), 91-114. DOI: https://doi.org/10.1079/NRR19980007
Bencze, S., Veisz, O., & Bedő, Z. (2004). Effects of high atmospheric CO 2 and heat stress on phytomass, yield and grain quality of winter wheat. Cereal Research Communications, 32, 75-82. DOI: https://doi.org/10.1007/BF03543283
Bilal, S., Shahzad, R., Imran, M., Jan, R., Kim, K. M., & Lee, I. J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress. Industrial Crops and Products, 143, 111931. DOI: https://doi.org/10.1016/j.indcrop.2019.111931
Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. DOI: https://doi.org/10.3389/fpls.2013.00273
Blumenthal, C., Bekes, F., Gras, P. W., Barlow, E. R., & Wrigley, C. W. (1995). Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chemistry, 72(6), 539-544.
Bolhàr-Nordenkampf, H. R., & Öquist, G. (1993). Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and production in a changing environment: a field and laboratory manual (pp. 193-206). Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-94-011-1566-7_12
Borghi, B., Corbellini, M., Ciaffi, M., Lafiandra, D., Stefanis, E., Sgrulletta, D., & Di, F. N. (1995). Effect of heat shock during grain filling on grain quality of bread and durum wheats. Australian Journal of Agricultural Research, 46(7), 1365-1380. DOI: https://doi.org/10.1071/AR9951365
Brestic, M., Zivcak, M., Kunderlikova, K., & Allakhverdiev, S. I. (2016). High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynthesis Research, 130, 251-266. DOI: https://doi.org/10.1007/s11120-016-0249-7
Brites, C., & Carrillo, J. M. (2001). Influence of high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits controlled by Glu‐1 and Glu‐3 loci on durum wheat quality. Cereal Chemistry, 78(1), 59-63. DOI: https://doi.org/10.1094/CCHEM.2001.78.1.59
Brown, A., & Rieseberg, L. (2006). Genetic features of populations from stress-prone environments. In Enhancing the use of crop genetic diversity to manage abiotic stress in agricultural production systems. Proceedings of a workshop, Budapest, Hungary, 23-27 May, 2005 (pp. 2-10). International Plant Genetic Resources Institute (IPGRI).
Calderini, D. F., & Ortiz‐Monasterio, I. (2003). Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Science, 43(1), 141-151. DOI: https://doi.org/10.2135/cropsci2003.1410
Chakraborty, D., Nagarajan, S., Aggarwal, P., Gupta, V. K., Tomar, R. K., Garg, R. N., ... & Kalra, N. (2008). Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural Water Management, 95(12), 1323-1334. DOI: https://doi.org/10.1016/j.agwat.2008.06.001
Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change—opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251-268. DOI: https://doi.org/10.1071/CP11303
Chauhan, S., Srivalli, S., Nautiyal, A.R. et al. Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica, 47, 536–547 (2009). DOI: https://doi.org/10.1007/s11099-009-0079-3
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany, 103(4), 551-560. DOI: https://doi.org/10.1093/aob/mcn125
Chen, S. Y., Zhang, X. Y., Pei, D., Sun, H. Y., & Chen, S. L. (2007). Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Annals of Applied Biology, 150(3), 261-268. DOI: https://doi.org/10.1111/j.1744-7348.2007.00144.x
Chinnusamy, V., & Khanna‐Chopra, R. (2003). Effect of heat stress on grain starch content in diploid, tetraploid and hexaploid wheat species. Journal of agronomy and crop science, 189(4), 242-249. DOI: https://doi.org/10.1046/j.1439-037X.2003.00036.x
Ciaffi, M., Tozzi, L., Borghi, B., Corbellini, M., & Lafiandra, D. (1996). Effect of heat shock during grain filling on the gluten protein composition of bread wheat. Journal of Cereal Science, 24(2), 91-100. DOI: https://doi.org/10.1006/jcrs.1996.0042
Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., Wright, J., ... & Clark, M. D. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome research, 27(5), 885-896. DOI: https://doi.org/10.1101/gr.217117.116
Corbellini, M., Canevar, M. G., Mazza, L., Ciaffi, M., Lafiandra, D., & Borghi, B. (1997). Effect of the duration and intensity of heat shock during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Functional Plant Biology, 24(2), 245-260. DOI: https://doi.org/10.1071/PP96067
Cossani, C. M., & Reynolds, M. P. (2015). Heat stress adaptation in elite lines derived from synthetic hexaploid wheat. Crop Science, 55(6), 2719-2735. DOI: https://doi.org/10.2135/cropsci2015.02.0092
Courtin, C. M., & Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour bread-making. Journal of Cereal Science, 35(3), 225-243. DOI: https://doi.org/10.1006/jcrs.2001.0433
Daniel, C., & Triboi, E. (2000). Effects of temperature and nitrogen nutrition on the grain composition of winter wheat: effects on gliadin content and composition. Journal of Cereal Science, 32(1), 45-56. DOI: https://doi.org/10.1006/jcrs.2000.0313
Daniel, C., & Triboi, E. (2002). Changes in wheat protein aggregation during grain development: effects of temperatures and water stress. European Journal of Agronomy, 16(1), 1-12. DOI: https://doi.org/10.1016/S1161-0301(01)00114-9
De Stefanis, E., Sgrulletta, D., De Vita, P., & Pucciarmati, S. (2002). Genetic variability to the effects of heat stress during grain filling on durum wheat quality. Cereal Research Communications, 30, 117-124. DOI: https://doi.org/10.1007/BF03543398
Dias, A. S., & Lidon, F. C. (2009). Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. Journal of Agronomy and Crop Science, 195(2), 137-147. DOI: https://doi.org/10.1111/j.1439-037X.2008.00347.x
Dias, A. S., & Lidon, F. C. (2010). Bread and durum wheat tolerance under heat stress: A synoptical overview. Emirates Journal of Food and Agriculture, 412-436. DOI: https://doi.org/10.9755/ejfa.v22i6.4660
Don, C., Lookhart, G., Naeem, H., MacRitchie, F., & Hamer, R. J. (2005). Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science, 42(1), 69-80. DOI: https://doi.org/10.1016/j.jcs.2005.01.005
Driedonks, N., Rieu, I., & Vriezen, W. H. (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction, 29, 67-79. DOI: https://doi.org/10.1007/s00497-016-0275-9
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491-507. DOI: https://doi.org/10.1080/07352689.2011.615687
Ferreira, M. S., Martre, P., Mangavel, C., Girousse, C., Rosa, N. N., Samson, M. F., & Morel, M. H. (2012). Physicochemical control of durum wheat grain filling and glutenin polymer assembly under different temperature regimes. Journal of Cereal Science, 56(1), 58-66. DOI: https://doi.org/10.1016/j.jcs.2011.11.001
Flagella, Z., Giuliani, M. M., Giuzio, L., Volpi, C., & Masci, S. (2010). Influence of water deficit on durum wheat storage protein composition and technological quality. European Journal of Agronomy, 33(3), 197-207. DOI: https://doi.org/10.1016/j.eja.2010.05.006
Fokar, M., Blum, A., & Nguyen, H. T. (1998). Heat tolerance in spring wheat. II. Grain filling. Euphytica, 104, 9-15. DOI: https://doi.org/10.1023/A:1018322502271
Forster, S. M., Ransom, J. K., Manthey, F. A., Rickertsen, J. R., & Mehring, G. H. (2017). Planting date, seeding rate, and cultivar impact agronomic traits and semolina of durum wheat. American Journal of Plant Sciences, 8(09), 2040. DOI: https://doi.org/10.4236/ajps.2017.89137
Foulkes, M. J., Sylvester-Bradley, R., Weightman, R., & Snape, J. W. (2007). Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Research, 103(1), 11-24. DOI: https://doi.org/10.1016/j.fcr.2007.04.007
Frederix, S. A., Van Hoeymissen, K. E., Courtin, C. M., & Delcour, J. A. (2004). Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behavior during wheat flour gluten− starch separation. Journal of Agricultural and Food Chemistry, 52(26), 7950-7956. DOI: https://doi.org/10.1021/jf049041v
Gebruers, K., Dornez, E., Bedo, Z., Rakszegi, M., Fras, A., Boros, D., ... & Delcour, J. A. (2010). Environment and genotype effects on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry, 58(17), 9353-9361. DOI: https://doi.org/10.1021/jf100447g
Georgieva, K. (1999). Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulgarian Journal of Plant Physiology, 25(3-4), 89-99.
Gibson, L. R., & Paulsen, G. M. (1999). Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science, 39(6), 1841-1846. DOI: https://doi.org/10.2135/cropsci1999.3961841x
Gooding, M. J., Ellis, R. H., Shewry, P. R., & Schofield, J. D. (2003). Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science, 37(3), 295-309. DOI: https://doi.org/10.1006/jcrs.2002.0501
Gupta, N. K., Agarwal, S., Agarwal, V. P., Nathawat, N. S., Gupta, S., & Singh, G. (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum, 35, 1837-1842. DOI: https://doi.org/10.1007/s11738-013-1221-1
Guttieri, M. J., Stark, J. C., O'Brien, K., & Souza, E. (2001). Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Science, 41(2), 327-335. DOI: https://doi.org/10.2135/cropsci2001.412327x
Guy, C. L., Niemi, K. J., & Brambl, R. (1985). Altered gene expression during cold acclimation of spinach. Proceedings of the National Academy of Sciences, 82(11), 3673-3677. DOI: https://doi.org/10.1073/pnas.82.11.3673
Guzmán, C., Autrique, J. E., Mondal, S., Singh, R. P., Govindan, V., Morales-Dorantes, A., ... & Peña, R. J. (2016). Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Research, 186, 157-165. DOI: https://doi.org/10.1016/j.fcr.2015.12.002
Hakim, M. A., Hossain, A., Teixeira da Silva, J. A., Zvolinsky, V. P., & Khan, M. M. (2012). Yield, Protein and Starch Content of Twenty Wheat (Triticum aestivum L.) Genotypes Exposed to High Temperature under Late Sowing Conditions. Journal of Scientific Research, 4(2). DOI: https://doi.org/10.3329/jsr.v4i2.8679
Hamam, K. A., & Khaled, A. G. A. (2009). Stability of wheat genotypes under different environments and their evaluation under sowing dates and nitrogen fertilizer levels. Australian Journal of Basic and Applied Sciences, 3(1), 206-217.
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684. DOI: https://doi.org/10.3390/ijms14059643
Hernández-Espinosa, N., Mondal, S., Autrique, E., Gonzalez-Santoyo, H., Crossa, J., Huerta-Espino, J., & Guzmán, C. (2018). Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Research, 215, 104-112. DOI: https://doi.org/10.1016/j.fcr.2017.10.003
Hong, B. H., Rubenthaler, G. L., & Allan, R. E. (1989). Wheat pentosans. I. Cultivar variation and relationship to kernel hardness. Cereal Chemistry, 66(5), 369-373.
Hossain, A., Sarker, M. A. Z., Saifuzzaman, M., Teixeira da Silva, J. A., Lozovskaya, M. V., & Akhter, M. M. (2013). Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. International Journal of Plant Production, 7(3), 615-636.
Hurkman, W. J., McCue, K. F., Altenbach, S. B., Korn, A., Tanaka, C. K., Kothari, K. M., ... & DuPont, F. M. (2003). Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 164(5), 873-881. DOI: https://doi.org/10.1016/S0168-9452(03)00076-1
Hurkman, W. J., Vensel, W. H., Tanaka, C. K., Whitehand, L., & Altenbach, S. B. (2009). Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science, 49(1), 12-23. DOI: https://doi.org/10.1016/j.jcs.2008.06.014
Ingvordsen, C. H., Gislum, R., Jørgensen, J. R., Mikkelsen, T. N., Stockmarr, A., & Jørgensen, R. B. (2016). Grain protein concentration and harvestable protein under future climate conditions. A study of 108 spring barley accessions. Journal of Experimental Botany, 67(8), 2151-2158. DOI: https://doi.org/10.1093/jxb/erw033
Joshi, A. K., Mishra, B., Chatrath, R., Ortiz Ferrara, G., & Singh, R. P. (2007). Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica, 157, 431-446. DOI: https://doi.org/10.1007/s10681-007-9385-7
Kajla, M., Yadav, V. K., Chhokar, R. S., & Sharma, R. K. (2015). Management practices to mitigate the impact of high temperature on wheat. Journal of Wheat Research, 7(1), 1-12. DOI: https://doi.org/10.31018/jans.v7i2.733
Katyal, M., Singh, N., & Kaur, S. (2022). Physicochemical, thermal, and pasting properties of starch separated from various timely sown and delayed sown (heat stressed) wheat of different wheat lines/variety. Starch‐Stärke, 74(5-6), 2200003. DOI: https://doi.org/10.1002/star.202200003
Kaur, A., Shevkani, K., Katyal, M., Singh, N., Ahlawat, A. K., & Singh, A. M. (2016). Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. Journal of Food Science and Technology, 53, 2127-2138. DOI: https://doi.org/10.1007/s13197-016-2202-3
Kaur, A., Singh, N., Ahlawat, A. K., Kaur, S., Singh, A. M., Chauhan, H., & Singh, G. P. (2013). Diversity in grain, flour, dough and gluten properties amongst Indian wheat cultivars varying in high molecular weight subunits (HMW-GS). Food Research International, 53(1), 63-72. DOI: https://doi.org/10.1016/j.foodres.2013.03.009
Kawasaki, K., & Uchida, S. (2016). Quality matters more than quantity: Asymmetric temperature effects on crop yield and quality grade. American Journal of Agricultural Economics, 98(4), 1195-1209. DOI: https://doi.org/10.1093/ajae/aaw036
Labuschagne, M. T., Elago, O., & Koen, E. (2009). The influence of temperature extremes on some quality and starch characteristics in bread, biscuit and durum wheat. Journal of Cereal Science, 49(2), 184-189. DOI: https://doi.org/10.1016/j.jcs.2008.09.001
Laurentin, A., Morrison, D., & Edwards, C. (2003). Dietary fibre in health and disease. DOI: https://doi.org/10.1046/j.1467-3010.2003.00298.x
Li, Y. F., Wu, Y., Hernandez-Espinosa, N., & Peña, R. J. (2013). Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters. Journal of Cereal Science, 57(3), 398-404. DOI: https://doi.org/10.1016/j.jcs.2013.01.005
Limon‐Ortega, A., Sayre, K. D., & Francis, C. A. (2000). Wheat and maize yields in response to straw management and nitrogen under a bed planting system. Agronomy Journal, 92(2), 295-302. DOI: https://doi.org/10.2134/agronj2000.922295x
Liu, H. C., Liao, H. T., & Charng, Y. Y. (2011). The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell & Environment, 34(5), 738-751. DOI: https://doi.org/10.1111/j.1365-3040.2011.02278.x
Liu, S., Li, X., Larsen, D. H., Zhu, X., Song, F., & Liu, F. (2017). Drought priming at vegetative growth stage enhances nitrogen‐use efficiency under post‐anthesis drought and heat stress in wheat. Journal of Agronomy and Crop Science, 203(1), 29-40. DOI: https://doi.org/10.1111/jac.12190
Lobell, D. B., Hammer, G. L., Chenu, K., Zheng, B., McLean, G., & Chapman, S. C. (2015). The shifting influence of drought and heat stress for crops in northeast Australia. Global Change Biology, 21(11), 4115-4127. DOI: https://doi.org/10.1111/gcb.13022
Lopes, F. F. D. P., Lima, R. S., Risolia, P. H. B., Ispada, J., Assumpção, M. E. O., & Visintin, J. A. (2012). Heat stress induced alteration in bovine oocytes: functional and cellular aspects. Animal Reproduction, 395-403.
Ludwig, F., & Asseng, S. (2010). Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agricultural Systems, 103(3), 127-136. DOI: https://doi.org/10.1016/j.agsy.2009.11.001
Lynam, J. K. (2004). Science in improved farming systems: Reflections on the organization of crop research in the CGIAR. In 4th International Crop Science Congress.< http://www. cropscience. org. au/icsc2004/symposia/4/2/1333_lynamj. htm>(accessed 04.07).
Machado, S., & Paulsen, G. M. (2001). Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant and Soil, 233, 179-187. DOI: https://doi.org/10.1023/A:1010346601643
Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667-681. DOI: https://doi.org/10.1023/A:1014826730024
Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580-585.
Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444(2), 139-158. DOI: https://doi.org/10.1016/j.abb.2005.10.018
Majoul-Haddad, T., Bancel, E., Martre, P., Triboi, E., & Branlard, G. (2013). Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. Journal of Cereal Science, 57(3), 486-495. DOI: https://doi.org/10.1016/j.jcs.2013.02.003
Mengutay, M., Ceylan, Y., Kutman, U. B., & Cakmak, I. (2013). Adequate magnesium nutrition mitigates adverse effects of heat stress on maize and wheat. Plant and Soil, 368, 57-72. DOI: https://doi.org/10.1007/s11104-013-1761-6
Modarresi, M., Mohammadi, V., Zali, A., & Mardi, M. (2010). Response of wheat yield and yield related traits to high temperature. Cereal Research Communications, 38(1), 23-31. DOI: https://doi.org/10.1556/CRC.38.2010.1.3
Mondal, S., Singh, R. P., Crossa, J., Huerta-Espino, J., Sharma, I., Chatrath, R., ... & Joshi, A. K. (2013). Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Research, 151, 19-26. DOI: https://doi.org/10.1016/j.fcr.2013.06.015
Mustafa, T., Sattar, A., Sher, A., Ul-Allah, S., Ijaz, M., Irfan, M., & Cheema, M. (2021). Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio-biochemical mechanisms. Scientific Reports, 11(1), 23170. DOI: https://doi.org/10.1038/s41598-021-02594-4
Niwas, R., & Khichar, M. L. (2016). Managing impact of climatic vagaries on the productivity of wheat and mustard in India. Mausam, 67(1), 205-222. DOI: https://doi.org/10.54302/mausam.v67i1.1179
Noohi, K., Fatahi, E., & Kamali, G. A. (2009, April). Heat stress effects analysis on wheat crop in southern provinces. In EGU General Assembly Conference Abstracts (p. 4441).
Nuttall, J. G., O'leary, G. J., Panozzo, J. F., Walker, C. K., Barlow, K. M., & Fitzgerald, G. J. (2017). Models of grain quality in wheat—A review. Field Crops Research, 202, 136-145. DOI: https://doi.org/10.1016/j.fcr.2015.12.011
Peck, A. W., & McDonald, G. K. (2010). Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant and Soil, 337, 355-374. DOI: https://doi.org/10.1007/s11104-010-0532-x
Peterson, C. J., Graybosch, R. A., Shelton, D. R., & Baenziger, P. S. (1997). Baking quality of hard winter wheat: Response of cultivars to environment in the Great Plains. In Wheat: Prospects for Global Improvement: Proceedings of the 5th International Wheat Conference, 10–14 June, 1996, Ankara, Turkey (pp. 223-228). Springer Netherlands. DOI: https://doi.org/10.1007/978-94-011-4896-2_30
Pradhan, G. P., & Prasad, P. V. (2015). Evaluation of wheat chromosome translocation lines for high temperature stress tolerance at grain filling stage. PLoS One, 10(2), e0116620. DOI: https://doi.org/10.1371/journal.pone.0116620
Pradhan, G. P., Prasad, P. V., Fritz, A. K., Kirkham, M. B., & Gill, B. S. (2012). Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology, 39(3), 190-198. DOI: https://doi.org/10.1071/FP11245
Prasad, P. V. V., Staggenborg, S. A., & Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes, 1, 301-355. DOI: https://doi.org/10.2134/advagricsystmodel1.c11
Reynolds, M., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant Biology, 31, 162-171. DOI: https://doi.org/10.1016/j.pbi.2016.04.005
Reynolds, M., Tattaris, M., Cossani, C. M., Ellis, M., Yamaguchi-Shinozaki, K., & Pierre, C. S. (2015). Exploring genetic resources to increase adaptation of wheat to climate change. In Advances in Wheat Genetics: From Genome to Field: Proceedings of the 12th International Wheat Genetics Symposium (pp. 355-368). Springer Japan. DOI: https://doi.org/10.1007/978-4-431-55675-6_41
Seleiman, M. F., Ibrahim, M., Abdel-Aal, S., & Zahran, G. (2011). Effect of sowing dates on productivity, technological and rheological characteristics of bread wheat. Journal of Agro Crop Science, 2(1), 1-6.
Semenov, M. A., & Halford, N. G. (2009). Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany, 60(10), 2791-2804. DOI: https://doi.org/10.1093/jxb/erp164
Semenov, M. A., & Shewry, P. R. (2011). Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Scientific Reports, 1(1), 66. DOI: https://doi.org/10.1038/srep00066
Semenov, M. A., & Stratonovitch, P. (2013). Designing high‐yielding wheat ideotypes for a changing climate. Food and Energy Security, 2(3), 185-196. DOI: https://doi.org/10.1002/fes3.34
Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257, 219-226. DOI: https://doi.org/10.1023/A:1026237816578
Shah, N. H., & Paulsen, G. M. (2004). Injury to photosynthesis and productivity from interaction between high temperature and drought during maturation of wheat. Asian Journal of Plant Sciences, 4(1), 67-74. DOI: https://doi.org/10.3923/ajps.2005.67.74
Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28(3), 269-277. DOI: https://doi.org/10.1111/j.1365-3040.2005.01324.x
Sharma, A., Rawat, R., Verma, J., & Jaiswal, J. (2013). Correlation and heat susceptibility index analysis for terminal heat tolerance in bread wheat. Journal of Central European Agriculture. DOI: https://doi.org/10.5513/JCEA01/14.2.1233
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012. DOI: https://doi.org/10.1155/2012/217037
Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537-1553. DOI: https://doi.org/10.1093/jxb/erp058
Shewry, P. R., Freeman, J., Wilkinson, M., Pellny, T., & Mitchell, R. A. (2010). Challenges and opportunities for using wheat for biofuel production. Energy Crops, 13-26. DOI: https://doi.org/10.1039/9781849732048-00013
Silva, E. N., Ferreira-Silva, S. L., de Vasconcelos Fontenele, A., Ribeiro, R. V., Viégas, R. A., & Silveira, J. A. G. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167(14), 1157-1164. DOI: https://doi.org/10.1016/j.jplph.2010.03.005
Singh, A., Singh, D., Kang, J. S., & Aggarwal, N. (2011). Management practices to mitigate the impact of high temperature on wheat: a review. IIOABJ, 2(7), 11-22.
Singh, N., Kaur, A., Katyal, M., Bhinder, S., Ahlawat, A. K., & Singh, A. M. (2016). Diversity in quality traits amongst Indian wheat varieties II: paste, dough and muffin making properties. Food Chemistry, 197, 316-324. DOI: https://doi.org/10.1016/j.foodchem.2015.10.035
Singh, N., Virdi, A. S., Katyal, M., Kaur, A., Kaur, D., Ahlawat, A. K., ... & Sharma, R. K. (2021). Evaluation of heat stress through delayed sowing on physicochemical and functional characteristics of grains, whole meals and flours of India wheat. Food Chemistry, 344, 128725. DOI: https://doi.org/10.1016/j.foodchem.2020.128725
Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21(2), 197-203. DOI: https://doi.org/10.1016/j.copbio.2010.03.002
Smith, D. L., & Almaraz, J. J. (2004). Climate change and crop production: contributions, impacts, and adaptations. Canadian Journal of Plant Pathology, 26(3), 253-266. DOI: https://doi.org/10.1080/07060660409507142
Soh, H. N., Sissons, M. J., & Turner, M. A. (2006). Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chemistry, 83(5), 513-519. DOI: https://doi.org/10.1094/CC-83-0513
Spiertz, J. H. J., Hamer, R. J., Xu, H., Primo-Martin, C., Don, C., & Van Der Putten, P. E. L. (2006). Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. European Journal of Agronomy, 25(2), 89-95. DOI: https://doi.org/10.1016/j.eja.2006.04.012
Stone, P. J., & Nicolas, M. E. (1994). Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Functional Plant Biology, 21(6), 887-900. DOI: https://doi.org/10.1071/PP9940887
Stone, P. J., & Nicolas, M. E. (1995). Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. I. Grain growth. Functional Plant Biology, 22(6), 927-934. DOI: https://doi.org/10.1071/PP9950927
Stone, P. J., Gras, P. W., & Nicolas, M. E. (1997). The influence of recovery temperature on the effects of a brief heat shock on wheat. III. Grain protein composition and dough properties. Journal of Cereal Science, 25(2), 129-141. DOI: https://doi.org/10.1006/jcrs.1996.0080
Streck, N. A. (2005). Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 35, 730-740. DOI: https://doi.org/10.1590/S0103-84782005000300041
Tahir, I. S. A., & Nakata, N. (2005). Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. Journal of Agronomy and Crop Science, 191(2), 106-115. DOI: https://doi.org/10.1111/j.1439-037X.2004.00127.x
Tahir, I. S., Nakata, N., Ali, A. M., Mustafa, H. M., Saad, A. S. I., Takata, K., & Abdalla, O. S. (2006). Genotypic and temperature effects on wheat grain yield and quality in a hot irrigated environment. Plant Breeding, 125(4), 323-330. DOI: https://doi.org/10.1111/j.1439-0523.2006.01236.x
Talukder, A. S. M. H. M., McDonald, G. K., & Gill, G. S. (2013). Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Research, 147, 1-11. DOI: https://doi.org/10.1016/j.fcr.2013.03.013
Talukder, A. S. M. H., Gill, G., McDonald, G., Hayman, P., Alexander, B., Dove, H., & Culvenor, R. A. (2010, November). Field evaluation of sensitivity of wheat to high temperature stress near flowering and early grain set. In 15th ASA Conference (pp. 15-19).
Tashiro, T., & Wardlaw, I. F. (1990). The response to high temperature shock and humidity changes prior to and during the early stages of grain development in wheat. Functional Plant Biology, 17(5), 551-561. DOI: https://doi.org/10.1071/PP9900551
Telfer, P., Edwards, J., Bennett, D., Ganesalingam, D., Able, J., & Kuchel, H. (2018). A field and controlled environment evaluation of wheat (Triticum aestivum) adaptation to heat stress. Field Crops Research, 229, 55-65. DOI: https://doi.org/10.1016/j.fcr.2018.09.013
Telfer, P., Edwards, J., Kuchel, H., Reinheimer, J., & Bennett, D. (2013). Heat stress tolerance of wheat. Grains Research and Development Corporation: Barton, ACT) Available at: http://www. grdc. com. au/Research-and-Development/GRDC-Update-Papers/2013/02/Heat-stress-tolerance-of-wheat [Verified 16 May 2016].
Toole, G. A., Wilson, R. H., Parker, M. L., Wellner, N. K., Wheeler, T. R., Shewry, P. R., & Mills, E. N. C. (2007). The effect of environment on endosperm cell-wall development in Triticum aestivum during grain filling: an infrared spectroscopic imaging study. Planta, 225, 1393-1403. DOI: https://doi.org/10.1007/s00425-006-0448-0
Triboi, E., & Triboi-Blondel, A. M. (2002). Productivity and grain or seed composition: a new approach to an old problem. European Journal of Agronomy, 16(3), 163-186. DOI: https://doi.org/10.1016/S1161-0301(01)00146-0
Trnka, M., Rötter, R. P., Ruiz-Ramos, M., Kersebaum, K. C., Olesen, J. E., Žalud, Z., & Semenov, M. A. (2014). Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change, 4(7), 637-643. DOI: https://doi.org/10.1038/nclimate2242
Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H., & Farooq, M. (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science, 208(1), 1-17. DOI: https://doi.org/10.1111/jac.12572
Ullah, S., Bramley, H., Mahmood, T., & Trethowan, R. (2020). A strategy of ideotype development for heat‐tolerant wheat. Journal of Agronomy and Crop Science, 206(2), 229-241. DOI: https://doi.org/10.1111/jac.12378
Upreti, K. K., & Sharma, M. (2016). Role of plant growth regulators in abiotic stress tolerance. Abiotic Stress Physiology of Horticultural Crops, 19-46. DOI: https://doi.org/10.1007/978-81-322-2725-0_2
Viswanathan, C., & Khanna‐Chopra, R. (2001). Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. Journal of Agronomy and Crop Science, 186(1), 1-7. DOI: https://doi.org/10.1046/j.1439-037x.2001.00432.x
Wahid, A., Farooq, M., Hussain, I., Rasheed, R., Galani, S. (2012). Responses and Management of Heat Stress in Plants. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_6 DOI: https://doi.org/10.1007/978-1-4614-0815-4_6
Wang, H., Wang, H., Shao, H., & Tang, X. (2016). Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7, 67. DOI: https://doi.org/10.3389/fpls.2016.00067
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218, 1-14. DOI: https://doi.org/10.1007/s00425-003-1105-5
Waraich, E. A., Ahmad, R., Ashraf, M. Y., Saifullah, & Ahmad, M. (2011). Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 61(4), 291-304. DOI: https://doi.org/10.1080/09064710.2010.491954
Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: a review. Journal of Soil Science and Plant Nutrition, 12(2), 221-244. DOI: https://doi.org/10.4067/S0718-95162012000200003
Wardlaw, I. F., & Wrigley, C. W. (1994). Heat tolerance in temperate cereals: an overview. Functional Plant Biology, 21(6), 695-703. DOI: https://doi.org/10.1071/PP9940695
Wrigley, C. W., Blumenthal, C., Gras, P. W., & Barlow, E. W. R. (1994). Temperature variation during grain filling and changes in wheat-grain quality. Functional Plant Biology, 21(6), 875-885. DOI: https://doi.org/10.1071/PP9940875
Yan, S. H., Yin, Y. P., Li, W. Y., Li, Y., Liang, T. B., Wu, Y. H., ... & Wang, Z. L. (2008). Effect of high temperature after anthesis on starch formation of two wheat cultivars differing in heat tolerance. Acta Ecologica Sinica, 28(12), 6138-6147.
Zhang, B., Liu, W., Chang, S. X., & Anyia, A. O. (2010). Water-deficit and high temperature affected water use efficiency and arabinoxylan concentration in spring wheat. Journal of Cereal Science, 52(2), 263-269. DOI: https://doi.org/10.1016/j.jcs.2010.05.014
Zhang, X. Y., Chen, S. Y., Pei, D., Liu, M. Y., & Sun, H. Y. (2005). Evapotranspiration, yield and crop coefficient of irrigated maize under straw mulch. Pedosphere, 15(5), 576-584.
Zhang, X., Cai, J., Wollenweber, B., Liu, F., Dai, T., Cao, W., & Jiang, D. (2013). Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science, 57(1), 134-140. DOI: https://doi.org/10.1016/j.jcs.2012.10.010
Zhang, X., Shi, Z., Jiang, D., Högy, P., & Fangmeier, A. (2019). Independent and combined effects of elevated CO2 and post-anthesis heat stress on protein quantity and quality in spring wheat grains. Food Chemistry, 277, 524-530. DOI: https://doi.org/10.1016/j.foodchem.2018.11.010
Zhao, Y., Yokota, K., Ayada, K., Yamamoto, Y., Okada, T., Shen, L., & Oguma, K. (2007). Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR) 2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. Journal of Medical Microbiology, 56(2), 154-164. DOI: https://doi.org/10.1099/jmm.0.46882-0
Zheng, B., Chenu, K., Fernanda Dreccer, M., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for A ustralian bread wheat (T riticum aestivium) varieties?. Global Change Biology, 18(9), 2899-2914. DOI: https://doi.org/10.1111/j.1365-2486.2012.02724.x