Main Article Content

Abstract

Industries have employed various wastewater treatment methods and techniques to reduce pollution load, including biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), color, and toxic metals. This review paper aims to highlight and analyze various water treatments with special focus on the use of nanomaterials and their composites with biopolymers. Many other techniques for wastewater treatment (WWT) have been developed using nanotechnology. These techniques are usually based on nanofiltration, disinfection, adsorption and biosorption, photocatalysis, and sensing technology. Techniques like fluorescence in situ hybridization (FISH) are used for clarification of composition, amount analysis, and dispensing of various bacterial groups in biofilms and granules. By review, it can be concluded that when the old primary water treatment technique is clubbed with nano-composite adsorption, composites containing specific biopolymers such as starch, chitosan, collagen, or cellulose-lignin materials can effectively adsorb nearly 100% of harmful metals such as arsenic, cadmium, mercury, lead, and chromium (As, Cd, Hg, Pb, Cr) from wastewater while also effectively removing color. Enhancing therapeutic efficacy, longevity, safety, and cost-effectiveness requires research into these methods.

Keywords

Nanotechnology Polymer Waste water treatment

Article Details

How to Cite
Rauthan, S., & Singh, A. (2024). Exploring trends of wastewater treatment by using nano-materials and their composites with bio-polymer. Environment Conservation Journal, 25(4), 1252–1256. https://doi.org/10.36953/ECJ.30492024

References

  1. Ali Mansoori, G., Bastami, T.R., Ahmadpour, A. & Eshaghi, Z. (2008). Environmental application of nanotechnology. Annual review of nano research 2008:439-93. DOI: https://doi.org/10.1142/9789812790248_0010
  2. Alkaykh, S., Mbarek, A. & Ali-Shattle, E.E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6(4). DOI: https://doi.org/10.1016/j.heliyon.2020.e03663
  3. Azzaza, S., Kumar, R.T., Vijaya, J.J. & Bououdina, M. (2016). Nanomaterials for heavy metal removal. In:Hussain CM, Kharisov B (ed) Advanced Environmental Analysis Applications of Nanomaterials. The Royal Society of Chemistry 1:139-166. DOI: https://doi.org/10.1039/9781782623625-00139
  4. Baranwal, J., Barse, B., Fais, A., Delogu, G.L. & Kumar, A. (2022). Biopolymer: A sustainable material for food and medical applications. Polymers 14(5):983. DOI: https://doi.org/10.3390/polym14050983
  5. Bhatnagar, A. & Sillanpää, M. (2009). Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater—a short review. Advances in colloid and Interface science 152(1-2):26-38. DOI: https://doi.org/10.1016/j.cis.2009.09.003
  6. Chella, S., Venugopal, V., George, J., Soon, K.J., Andrews, N.G. & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. J. Chem. Eng 306:1116-1137. DOI: https://doi.org/10.1016/j.cej.2016.08.053
  7. Cunha Cunha, C., Silva, L., Paulo, J., Faria, M., Nogueira, N. & Cordeiro, N. (2020). Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environ Pollut 263:114385. DOI: https://doi.org/10.1016/j.envpol.2020.114385
  8. Fanourakis, S.K., Peña-Bahamonde, J., Bandara, P.C. & Rodrigues, D.F. (2020). Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. NPJ Clean Water 3(1):1. DOI: https://doi.org/10.1038/s41545-019-0048-8
  9. Huang, Y. & Chen, X. (2014). Carbon nanomaterial-based composites in wastewater purification. Nano Life 4(03):1441006.. DOI: https://doi.org/10.1142/S1793984414410062
  10. Kefeni, K.K. & Mamba, B.B. (2020). Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustainable materials and technologies 23:e00140. DOI: https://doi.org/10.1016/j.susmat.2019.e00140
  11. Krakowiak, R., Musial, J., Bakun, P., Spychała, M., Czarczynska-Goslinska, B., Mlynarczyk, D.T., Koczorowski, T., Sobotta, L., Stanisz, B. & Goslinski, T. (2021). Titanium dioxide-based photocatalysts for degradation of emerging contaminants including pharmaceutical pollutants. Applied Sciences 11(18):8674. DOI: https://doi.org/10.3390/app11188674
  12. Kumar, P., Kumar, S. & Bhardwaj, N.K. (2011). Titanium dioxide photocatalysis for the pulp and paper industry wastewater treatment. Indian J. Chem. Technol 4(3):327-332. DOI: https://doi.org/10.17485/ijst/2011/v4i3.31
  13. Li, F.B. & Li, X.Z. (2002). Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal. A Gen 228(1-2):15-27. DOI: https://doi.org/10.1016/S0926-860X(01)00953-X
  14. Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y. & Hao, H. (2016). An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng 2016. DOI: https://doi.org/10.1155/2016/4964828
  15. Mohammed Redha, Z., Abdulla Yusuf, H., Amin, R. & Bououdina, M. (2020). The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab j. basic appl. sci 27(1):287-298. DOI: https://doi.org/10.1080/25765299.2020.1800163
  16. Nandanwar, S., Borkar, S., Cho, J.H. & Kim, H.J. (2020). Microwave-assisted synthesis and characterization of solar-light-active copper–vanadium oxide: evaluation of antialgal and dye degradation activity. Catalysts 11(1):36. DOI: https://doi.org/10.3390/catal11010036
  17. Nizamuddin, S., Siddiqui, M.T., Mubarak, N.M., Baloch, H.A., Abdullah, E.C., Mazari, S.A., Griffin, G.J., Srinivasan, M.P. & Tanksale, A. (2019). In: Thomas S, Pasquini D, Shao-Yuan Leu, Gopakumar DA (ed) Nanoscale materials in water purification 1st edn Elsevier 447-472. DOI: https://doi.org/10.1016/B978-0-12-813926-4.00023-9
  18. Ojha, A., Thakur, S. & Prakash, J. (2023). Graphene family nanomaterials as emerging sole layered nanomaterials for wastewater treatment: Recent developments, potential hazards, prevention and future prospects. Environ Adv 13:100402. DOI: https://doi.org/10.1016/j.envadv.2023.100402
  19. Peng, B., Yao, Z., Wang, X., Crombeen, M., Sweeney, D.G. & Tam, K.C. (2020). Cellulose-based materials in wastewater treatment of petroleum industry. GEE 5(1):37-49. DOI: https://doi.org/10.1016/j.gee.2019.09.003
  20. Rasheed, P., Haq, S., Waseem, M., Rehman, S.U., Rehman, W., Bibi, N. & Shah, S.A. (2020). Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Materials Research Express 7(2):025011. DOI: https://doi.org/10.1088/2053-1591/ab6fa2
  21. Sakkayawong, N., Thiravetyan, P. & Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 286(1):36-42. DOI: https://doi.org/10.1016/j.jcis.2005.01.020
  22. Smýkalová, A., Sokolová, B., Foniok, K., Matějka, V. & Praus, P. (2019). Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials. Nanomaterials 9(9):1194. DOI: https://doi.org/10.3390/nano9091194
  23. Sohel, A. & Singh, S. (2022). Synthesis and Characterization of Selenium Nanoparticles and their Photocatalytic Activity. NanoWorld J 8(S1):S120-S123.
  24. Sridevi, M., Nirmala, C., Jawaha,r N., Arthi, G., Vallinayagam, S. & Sharma, V.K. (2021). Role of nanomaterial's as adsorbent for heterogeneous reaction in waste water treatment. Journal of Molecular Structure 1241:130596. DOI: https://doi.org/10.1016/j.molstruc.2021.130596
  25. Tien, T.M., Chen, C.H., Huang, C.T. & Chen, E.L. (2022). Photocatalytic degradation of methyl orange dyes using green synthesized MoS2/Co3O4 nanohybrids. Catalysts 12(11):1474. DOI: https://doi.org/10.3390/catal12111474
  26. ul Haq, A., Saeed, M., Khan, S.G. & Ibrahim, M. (2021). Photocatalytic applications of titanium dioxide (TiO 2). In: Hafiz Muhammad Ali (ed) Titanium Dioxide: Advances and Applications, BoD – Books on Demand. DOI: https://doi.org/10.5772/intechopen.99598
  27. Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O. & Nikolic, M.V. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. R. Soc. Open Sci 7(9):200708. DOI: https://doi.org/10.1098/rsos.200708
  28. Wang, J., Mam R., Li, L., Gu, P. & Wang, X. (2020). Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U (VI), Eu (III), and Cr (VI) from aqueous solutions. Cellulose 27:1635-1648. DOI: https://doi.org/10.1007/s10570-019-02885-0
  29. Wang, J. & Zhuang, S. (2017). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Environ. Sci. Technol 47(23):2331-2386. DOI: https://doi.org/10.1080/10643389.2017.1421845
  30. Westerhoff, P.K., Kiser, M.A. & Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci 30(3):109-117. DOI: https://doi.org/10.1089/ees.2012.0340
  31. Zhao, J., Ge, S., Pan, D., Shao, Q., Lin, J., Wang, Z. & Guo, Z. (2018). Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J Colloid Interface Sci 529:111-121. DOI: https://doi.org/10.1016/j.jcis.2018.05.091