Main Article Content
Abstract
Industries have employed various wastewater treatment methods and techniques to reduce pollution load, including biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), color, and toxic metals. This review paper aims to highlight and analyze various water treatments with special focus on the use of nanomaterials and their composites with biopolymers. Many other techniques for wastewater treatment (WWT) have been developed using nanotechnology. These techniques are usually based on nanofiltration, disinfection, adsorption and biosorption, photocatalysis, and sensing technology. Techniques like fluorescence in situ hybridization (FISH) are used for clarification of composition, amount analysis, and dispensing of various bacterial groups in biofilms and granules. By review, it can be concluded that when the old primary water treatment technique is clubbed with nano-composite adsorption, composites containing specific biopolymers such as starch, chitosan, collagen, or cellulose-lignin materials can effectively adsorb nearly 100% of harmful metals such as arsenic, cadmium, mercury, lead, and chromium (As, Cd, Hg, Pb, Cr) from wastewater while also effectively removing color. Enhancing therapeutic efficacy, longevity, safety, and cost-effectiveness requires research into these methods.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ali Mansoori, G., Bastami, T.R., Ahmadpour, A. & Eshaghi, Z. (2008). Environmental application of nanotechnology. Annual review of nano research 2008:439-93. DOI: https://doi.org/10.1142/9789812790248_0010
- Alkaykh, S., Mbarek, A. & Ali-Shattle, E.E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6(4). DOI: https://doi.org/10.1016/j.heliyon.2020.e03663
- Azzaza, S., Kumar, R.T., Vijaya, J.J. & Bououdina, M. (2016). Nanomaterials for heavy metal removal. In:Hussain CM, Kharisov B (ed) Advanced Environmental Analysis Applications of Nanomaterials. The Royal Society of Chemistry 1:139-166. DOI: https://doi.org/10.1039/9781782623625-00139
- Baranwal, J., Barse, B., Fais, A., Delogu, G.L. & Kumar, A. (2022). Biopolymer: A sustainable material for food and medical applications. Polymers 14(5):983. DOI: https://doi.org/10.3390/polym14050983
- Bhatnagar, A. & Sillanpää, M. (2009). Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater—a short review. Advances in colloid and Interface science 152(1-2):26-38. DOI: https://doi.org/10.1016/j.cis.2009.09.003
- Chella, S., Venugopal, V., George, J., Soon, K.J., Andrews, N.G. & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. J. Chem. Eng 306:1116-1137. DOI: https://doi.org/10.1016/j.cej.2016.08.053
- Cunha Cunha, C., Silva, L., Paulo, J., Faria, M., Nogueira, N. & Cordeiro, N. (2020). Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environ Pollut 263:114385. DOI: https://doi.org/10.1016/j.envpol.2020.114385
- Fanourakis, S.K., Peña-Bahamonde, J., Bandara, P.C. & Rodrigues, D.F. (2020). Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. NPJ Clean Water 3(1):1. DOI: https://doi.org/10.1038/s41545-019-0048-8
- Huang, Y. & Chen, X. (2014). Carbon nanomaterial-based composites in wastewater purification. Nano Life 4(03):1441006.. DOI: https://doi.org/10.1142/S1793984414410062
- Kefeni, K.K. & Mamba, B.B. (2020). Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustainable materials and technologies 23:e00140. DOI: https://doi.org/10.1016/j.susmat.2019.e00140
- Krakowiak, R., Musial, J., Bakun, P., Spychała, M., Czarczynska-Goslinska, B., Mlynarczyk, D.T., Koczorowski, T., Sobotta, L., Stanisz, B. & Goslinski, T. (2021). Titanium dioxide-based photocatalysts for degradation of emerging contaminants including pharmaceutical pollutants. Applied Sciences 11(18):8674. DOI: https://doi.org/10.3390/app11188674
- Kumar, P., Kumar, S. & Bhardwaj, N.K. (2011). Titanium dioxide photocatalysis for the pulp and paper industry wastewater treatment. Indian J. Chem. Technol 4(3):327-332. DOI: https://doi.org/10.17485/ijst/2011/v4i3.31
- Li, F.B. & Li, X.Z. (2002). Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal. A Gen 228(1-2):15-27. DOI: https://doi.org/10.1016/S0926-860X(01)00953-X
- Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y. & Hao, H. (2016). An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng 2016. DOI: https://doi.org/10.1155/2016/4964828
- Mohammed Redha, Z., Abdulla Yusuf, H., Amin, R. & Bououdina, M. (2020). The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab j. basic appl. sci 27(1):287-298. DOI: https://doi.org/10.1080/25765299.2020.1800163
- Nandanwar, S., Borkar, S., Cho, J.H. & Kim, H.J. (2020). Microwave-assisted synthesis and characterization of solar-light-active copper–vanadium oxide: evaluation of antialgal and dye degradation activity. Catalysts 11(1):36. DOI: https://doi.org/10.3390/catal11010036
- Nizamuddin, S., Siddiqui, M.T., Mubarak, N.M., Baloch, H.A., Abdullah, E.C., Mazari, S.A., Griffin, G.J., Srinivasan, M.P. & Tanksale, A. (2019). In: Thomas S, Pasquini D, Shao-Yuan Leu, Gopakumar DA (ed) Nanoscale materials in water purification 1st edn Elsevier 447-472. DOI: https://doi.org/10.1016/B978-0-12-813926-4.00023-9
- Ojha, A., Thakur, S. & Prakash, J. (2023). Graphene family nanomaterials as emerging sole layered nanomaterials for wastewater treatment: Recent developments, potential hazards, prevention and future prospects. Environ Adv 13:100402. DOI: https://doi.org/10.1016/j.envadv.2023.100402
- Peng, B., Yao, Z., Wang, X., Crombeen, M., Sweeney, D.G. & Tam, K.C. (2020). Cellulose-based materials in wastewater treatment of petroleum industry. GEE 5(1):37-49. DOI: https://doi.org/10.1016/j.gee.2019.09.003
- Rasheed, P., Haq, S., Waseem, M., Rehman, S.U., Rehman, W., Bibi, N. & Shah, S.A. (2020). Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Materials Research Express 7(2):025011. DOI: https://doi.org/10.1088/2053-1591/ab6fa2
- Sakkayawong, N., Thiravetyan, P. & Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 286(1):36-42. DOI: https://doi.org/10.1016/j.jcis.2005.01.020
- Smýkalová, A., Sokolová, B., Foniok, K., Matějka, V. & Praus, P. (2019). Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials. Nanomaterials 9(9):1194. DOI: https://doi.org/10.3390/nano9091194
- Sohel, A. & Singh, S. (2022). Synthesis and Characterization of Selenium Nanoparticles and their Photocatalytic Activity. NanoWorld J 8(S1):S120-S123.
- Sridevi, M., Nirmala, C., Jawaha,r N., Arthi, G., Vallinayagam, S. & Sharma, V.K. (2021). Role of nanomaterial's as adsorbent for heterogeneous reaction in waste water treatment. Journal of Molecular Structure 1241:130596. DOI: https://doi.org/10.1016/j.molstruc.2021.130596
- Tien, T.M., Chen, C.H., Huang, C.T. & Chen, E.L. (2022). Photocatalytic degradation of methyl orange dyes using green synthesized MoS2/Co3O4 nanohybrids. Catalysts 12(11):1474. DOI: https://doi.org/10.3390/catal12111474
- ul Haq, A., Saeed, M., Khan, S.G. & Ibrahim, M. (2021). Photocatalytic applications of titanium dioxide (TiO 2). In: Hafiz Muhammad Ali (ed) Titanium Dioxide: Advances and Applications, BoD – Books on Demand. DOI: https://doi.org/10.5772/intechopen.99598
- Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O. & Nikolic, M.V. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. R. Soc. Open Sci 7(9):200708. DOI: https://doi.org/10.1098/rsos.200708
- Wang, J., Mam R., Li, L., Gu, P. & Wang, X. (2020). Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U (VI), Eu (III), and Cr (VI) from aqueous solutions. Cellulose 27:1635-1648. DOI: https://doi.org/10.1007/s10570-019-02885-0
- Wang, J. & Zhuang, S. (2017). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Environ. Sci. Technol 47(23):2331-2386. DOI: https://doi.org/10.1080/10643389.2017.1421845
- Westerhoff, P.K., Kiser, M.A. & Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci 30(3):109-117. DOI: https://doi.org/10.1089/ees.2012.0340
- Zhao, J., Ge, S., Pan, D., Shao, Q., Lin, J., Wang, Z. & Guo, Z. (2018). Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J Colloid Interface Sci 529:111-121. DOI: https://doi.org/10.1016/j.jcis.2018.05.091
References
Ali Mansoori, G., Bastami, T.R., Ahmadpour, A. & Eshaghi, Z. (2008). Environmental application of nanotechnology. Annual review of nano research 2008:439-93. DOI: https://doi.org/10.1142/9789812790248_0010
Alkaykh, S., Mbarek, A. & Ali-Shattle, E.E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6(4). DOI: https://doi.org/10.1016/j.heliyon.2020.e03663
Azzaza, S., Kumar, R.T., Vijaya, J.J. & Bououdina, M. (2016). Nanomaterials for heavy metal removal. In:Hussain CM, Kharisov B (ed) Advanced Environmental Analysis Applications of Nanomaterials. The Royal Society of Chemistry 1:139-166. DOI: https://doi.org/10.1039/9781782623625-00139
Baranwal, J., Barse, B., Fais, A., Delogu, G.L. & Kumar, A. (2022). Biopolymer: A sustainable material for food and medical applications. Polymers 14(5):983. DOI: https://doi.org/10.3390/polym14050983
Bhatnagar, A. & Sillanpää, M. (2009). Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater—a short review. Advances in colloid and Interface science 152(1-2):26-38. DOI: https://doi.org/10.1016/j.cis.2009.09.003
Chella, S., Venugopal, V., George, J., Soon, K.J., Andrews, N.G. & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. J. Chem. Eng 306:1116-1137. DOI: https://doi.org/10.1016/j.cej.2016.08.053
Cunha Cunha, C., Silva, L., Paulo, J., Faria, M., Nogueira, N. & Cordeiro, N. (2020). Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environ Pollut 263:114385. DOI: https://doi.org/10.1016/j.envpol.2020.114385
Fanourakis, S.K., Peña-Bahamonde, J., Bandara, P.C. & Rodrigues, D.F. (2020). Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse. NPJ Clean Water 3(1):1. DOI: https://doi.org/10.1038/s41545-019-0048-8
Huang, Y. & Chen, X. (2014). Carbon nanomaterial-based composites in wastewater purification. Nano Life 4(03):1441006.. DOI: https://doi.org/10.1142/S1793984414410062
Kefeni, K.K. & Mamba, B.B. (2020). Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment. Sustainable materials and technologies 23:e00140. DOI: https://doi.org/10.1016/j.susmat.2019.e00140
Krakowiak, R., Musial, J., Bakun, P., Spychała, M., Czarczynska-Goslinska, B., Mlynarczyk, D.T., Koczorowski, T., Sobotta, L., Stanisz, B. & Goslinski, T. (2021). Titanium dioxide-based photocatalysts for degradation of emerging contaminants including pharmaceutical pollutants. Applied Sciences 11(18):8674. DOI: https://doi.org/10.3390/app11188674
Kumar, P., Kumar, S. & Bhardwaj, N.K. (2011). Titanium dioxide photocatalysis for the pulp and paper industry wastewater treatment. Indian J. Chem. Technol 4(3):327-332. DOI: https://doi.org/10.17485/ijst/2011/v4i3.31
Li, F.B. & Li, X.Z. (2002). Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catal. A Gen 228(1-2):15-27. DOI: https://doi.org/10.1016/S0926-860X(01)00953-X
Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y. & Hao, H. (2016). An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng 2016. DOI: https://doi.org/10.1155/2016/4964828
Mohammed Redha, Z., Abdulla Yusuf, H., Amin, R. & Bououdina, M. (2020). The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab j. basic appl. sci 27(1):287-298. DOI: https://doi.org/10.1080/25765299.2020.1800163
Nandanwar, S., Borkar, S., Cho, J.H. & Kim, H.J. (2020). Microwave-assisted synthesis and characterization of solar-light-active copper–vanadium oxide: evaluation of antialgal and dye degradation activity. Catalysts 11(1):36. DOI: https://doi.org/10.3390/catal11010036
Nizamuddin, S., Siddiqui, M.T., Mubarak, N.M., Baloch, H.A., Abdullah, E.C., Mazari, S.A., Griffin, G.J., Srinivasan, M.P. & Tanksale, A. (2019). In: Thomas S, Pasquini D, Shao-Yuan Leu, Gopakumar DA (ed) Nanoscale materials in water purification 1st edn Elsevier 447-472. DOI: https://doi.org/10.1016/B978-0-12-813926-4.00023-9
Ojha, A., Thakur, S. & Prakash, J. (2023). Graphene family nanomaterials as emerging sole layered nanomaterials for wastewater treatment: Recent developments, potential hazards, prevention and future prospects. Environ Adv 13:100402. DOI: https://doi.org/10.1016/j.envadv.2023.100402
Peng, B., Yao, Z., Wang, X., Crombeen, M., Sweeney, D.G. & Tam, K.C. (2020). Cellulose-based materials in wastewater treatment of petroleum industry. GEE 5(1):37-49. DOI: https://doi.org/10.1016/j.gee.2019.09.003
Rasheed, P., Haq, S., Waseem, M., Rehman, S.U., Rehman, W., Bibi, N. & Shah, S.A. (2020). Green synthesis of vanadium oxide-zirconium oxide nanocomposite for the degradation of methyl orange and picloram. Materials Research Express 7(2):025011. DOI: https://doi.org/10.1088/2053-1591/ab6fa2
Sakkayawong, N., Thiravetyan, P. & Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J Colloid Interface Sci 286(1):36-42. DOI: https://doi.org/10.1016/j.jcis.2005.01.020
Smýkalová, A., Sokolová, B., Foniok, K., Matějka, V. & Praus, P. (2019). Photocatalytic degradation of selected pharmaceuticals using g-C3N4 and TiO2 nanomaterials. Nanomaterials 9(9):1194. DOI: https://doi.org/10.3390/nano9091194
Sohel, A. & Singh, S. (2022). Synthesis and Characterization of Selenium Nanoparticles and their Photocatalytic Activity. NanoWorld J 8(S1):S120-S123.
Sridevi, M., Nirmala, C., Jawaha,r N., Arthi, G., Vallinayagam, S. & Sharma, V.K. (2021). Role of nanomaterial's as adsorbent for heterogeneous reaction in waste water treatment. Journal of Molecular Structure 1241:130596. DOI: https://doi.org/10.1016/j.molstruc.2021.130596
Tien, T.M., Chen, C.H., Huang, C.T. & Chen, E.L. (2022). Photocatalytic degradation of methyl orange dyes using green synthesized MoS2/Co3O4 nanohybrids. Catalysts 12(11):1474. DOI: https://doi.org/10.3390/catal12111474
ul Haq, A., Saeed, M., Khan, S.G. & Ibrahim, M. (2021). Photocatalytic applications of titanium dioxide (TiO 2). In: Hafiz Muhammad Ali (ed) Titanium Dioxide: Advances and Applications, BoD – Books on Demand. DOI: https://doi.org/10.5772/intechopen.99598
Vasiljevic, Z.Z., Dojcinovic, M.P., Vujancevic, J.D., Jankovic-Castvan, I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S., Brankovic, G.O. & Nikolic, M.V. (2020). Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol–gel method. R. Soc. Open Sci 7(9):200708. DOI: https://doi.org/10.1098/rsos.200708
Wang, J., Mam R., Li, L., Gu, P. & Wang, X. (2020). Chitosan modified molybdenum disulfide composites as adsorbents for the simultaneous removal of U (VI), Eu (III), and Cr (VI) from aqueous solutions. Cellulose 27:1635-1648. DOI: https://doi.org/10.1007/s10570-019-02885-0
Wang, J. & Zhuang, S. (2017). Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Environ. Sci. Technol 47(23):2331-2386. DOI: https://doi.org/10.1080/10643389.2017.1421845
Westerhoff, P.K., Kiser, M.A. & Hristovski, K. (2013). Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci 30(3):109-117. DOI: https://doi.org/10.1089/ees.2012.0340
Zhao, J., Ge, S., Pan, D., Shao, Q., Lin, J., Wang, Z. & Guo, Z. (2018). Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J Colloid Interface Sci 529:111-121. DOI: https://doi.org/10.1016/j.jcis.2018.05.091