Main Article Content

Abstract

This study evaluated the toxicity of Dithane M-45, a common fungicide, in the freshwater fish species Labeo rohita. The lab-scale experiments were conducted to determine the concentration-dependent effects on fish mortality and behavioral changes. The median lethal concentration (LC50) values were identified as 190 mg/L at 48 hours, 170 mg/L at 72 hours, and 160 mg/L at 96 hours, indicating increased toxicity over time. Observations during the initial hour of exposure included pronounced behavioral responses such as jumping, increased movement, and frequent chelae scraping against body parts. These acute responses gradually subsided, with the fish returning to a more sedentary state within 36 hours. Subsequently, the fish settled at the bottom of the aquaria, displaying reduced activity. The gills and the inner linings of the branchiostegal began to produce mucus after 36 hours of exposure. This mucus production became more pronounced with prolonged exposure, particularly at the 96-hour mark. These findings suggest that Dithane M-45 has significant acute and subacute toxic effects on L. rohita, impacting both physiological and behavioral parameters. The findings showed the importance of monitoring and regulating the use of Dithane M-45 in aquatic environments to mitigate potential ecological and health risks.

Keywords

Environmental contamination Ethological responses Fish physiology Fungicide toxicity Pesticide exposure Toxicological assessment

Article Details

How to Cite
Maurya, P. K., Jyoti, S., & Maurya, P. K. (2024). Acute toxicity of dithane M-45 in freshwater fish Labeo rohita: A laboratory study . Environment Conservation Journal, 25(4), 1113–1119. https://doi.org/10.36953/ECJ.28752902

References

  1. Ahmed, M. S., Shafiq, K., & Kiani, M. S. (2012). Growth performance of major carp, Labeo rohita fingerlings on commercial feeds. Journal of Animal and Plant Sciences, 22(1), 93-96.
  2. Ashaf-Ud-Doulah, M., Al Mamun, A., Rahman, M. L., Islam, S. M., Jannat, R., Hossain, M. A. R., & Shahjahan, M. (2020). High temperature acclimation alters upper thermal limits and growth performance of Indian major carp, rohu, Labeo rohita (Hamilton, 1822). Journal of Thermal Biology, 93, 102738. DOI: https://doi.org/10.1016/j.jtherbio.2020.102738
  3. Bello-Olusoji, O. A., & Adebola, B. O. (2006). Toxic-effect of aldrin and copper sulphate on freshwater prawn-Caridina africana. Journal of Fisheries International, 1(1), 12-16.
  4. Bhat, B. A., Bhat, I. A., Vishwakarma, S., Verma, A., & Saxena, G. (2016). Acute Toxicity and Behavioral Responses of Labeo rohita (Hamilton) to an Organophosphate (Dichlorvos). Biosciences Biotechnology Research Asia, 9(1), 447-450. DOI: https://doi.org/10.13005/bbra/1023
  5. Bukola, D., Zaid, A., Olalekan, E. I., & Falilu, A. (2015). Consequences of anthropogenic activities on fish and the aquatic environment. Poultry, Fisheries & Wildlife Sciences, 3(2), 1-12. DOI: https://doi.org/10.4172/2375-446X.1000138
  6. Dahunsi, S. O., Oranusi, S. U., & Ishola, R. O. (2011). Biochemical profile of Clarias gariepinus exposed to sub-lethal concentrations of chemical additives effluent. International Journal of Research in Environmental Science and Technology, 1(4), 52-58.
  7. Dulama, I. D., Radulescu, C., Bucurica, I. A., Teodorescu, S., Stirbescu, R. M., Cimpoca, G. V., & Gurgu, I. V. (2018). Quartz crystal microbalance used as sensor for pesticides detection. Journal of Science and Arts, 18, 445-452.
  8. Dutra Costa, B. P., Aquino Moura, L., Gomes Pinto, S. A., Lima-Maximino, M., & Maximino, C. (2020). Zebrafish models in neural and behavioral toxicology across the life stages. Fishes, 5(3), 23. DOI: https://doi.org/10.3390/fishes5030023
  9. Farhan, M., Wajid, A., Hussain, T., Jabeen, F., Ishaque, U., Iftikhar, M., ... & Noureen, A. (2021). Investigation of oxidative stress enzymes and histological alterations in tilapia exposed to chlorpyrifos. Environmental Science and Pollution Research, 28, 13105-13111. DOI: https://doi.org/10.1007/s11356-020-11528-y
  10. Ghate, H. V., & Mulherkar, L. (1979). Histological changes in the gills of two freshwater prawn species exposed to copper sulphate. Indian Journal of Experimental Biology, 17(8), 838-840.
  11. Gürol, M. A., Arman, S., & Yön, N. D. (2020). Effects of mancozeb on the testicular histology of the zebrafish (Danio rerio). In Annales de Limnologie-International Journal of Limnology (Vol. 56, p. 10). EDP Sciences. DOI: https://doi.org/10.1051/limn/2020009
  12. Hershberger, P. K., Stick, K., Bui, B., Carroll, C., Fall, B., Mork, C., & Kocan, R. (2002). Incidence of Ichthyophonus hoferi in Puget Sound fishes and its increase with age of Pacific herring. Journal of Aquatic Animal Health, 14(1), 50-56. DOI: https://doi.org/10.1577/1548-8667(2002)014<0050:IOIHIP>2.0.CO;2
  13. Karmakar, S., Karmakar, S., Jana, P., Chhaba, B., Das, S. A., & Rout, S. K. (2021). Nonylphenol exposure in Labeo rohita (Ham.): Evaluation of behavioural response, histological, haematological and enzymatic alterations. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109058. DOI: https://doi.org/10.1016/j.cbpc.2021.109058
  14. Khalil, R. H., Saad, T. T., Selema, T. A. A., & Abdel-Latif, H. M. (2015). Branchiomyces demigrans infection in farm-reared common carp (Cyprinus carpio L.) and Nile tilapia (Oreochromis niloticus) at different localities in Egypt, with special emphasis to the role of environmental stress factors. International Journal of Innovative Studies in Aquatic Biology and Fisheries, 1(1), 15-23.
  15. Kumar, M., & Singh, S. K. (2024). Studies on Morphological Effect of Some Pesticides on Fresh Water Fish, Labeo rohita in Sai River of Jaunpur District, Uttar Pradesh, India. Uttar Pradesh Journal of Zoology, 45(12), 189-195. DOI: https://doi.org/10.56557/upjoz/2024/v45i124117
  16. Kumar, R., Sankhla, M. S., Kumar, R., & Sonone, S. S. (2021). Impact of pesticide toxicity in aquatic environment. Biointerface Research in Applied Chemistry, 11(3), 10131-10140. DOI: https://doi.org/10.33263/BRIAC113.1013110140
  17. Lanjewar, K. H., Zade, S. B., Bhaisare, L. Y., & Chaudhary, D. D. (2023). Impact of hexaconazole on histo-architecture of liver and intestine of freshwater African catfish, Clarias gariepinus (Burchell, 1822). Biochemical & Cellular Archives, 23(1), 1-15. DOI: https://doi.org/10.51470/bca.2023.23.1.639
  18. Little, E. E., Archeski, R. D., Flerov, B. A., & Kozlovskaya, V. I. (1990). Behavioral indicators of sublethal toxicity in rainbow trout. Archives of Environmental Contamination and Toxicology, 19, 380-385. DOI: https://doi.org/10.1007/BF01054982
  19. Lodhi, H. S., Khan, M. A., Verma, R. S., & Sharma, U. D. (2006). Acute toxicity of copper sulphate to fresh water prawns. Journal of Environmental Biology, 27(3), 585-588.
  20. Majumder, R. (2024). Comparative Acute Toxicity Studies of Chlorpyrifos Technical Grade with its Emulsifiable Concentrate (20% EC) on Labeo rohita, a Freshwater Major Carp, and Mystus vittatus, a Freshwater Catfish. Bulletin of Environmental Contamination and Toxicology, 113(2), 1-8. DOI: https://doi.org/10.1007/s00128-024-03936-4
  21. Marigoudar, S. R., Ahmed, R. N., & David, M. (2009). Cypermethrin induced respiratory and behavioural responses of the freshwater teleost, Labeo rohita (Hamilton). Veterinarski arhiv, 79(6), 583-590.
  22. Martins, M. L., Jerônimo, G. T., Figueredo, A. B., Tancredo, K. R., Bertaglia, E. A., Furtado, W. E., & Mouriño, J. L. (2021). Antiparasitic agents. In Aquaculture Pharmacology (pp. 169-217). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-821339-1.00002-7
  23. Maurya, P. K., & Malik, D. S. (2016). Accumulation and distribution of organochlorine and organophosphorus pesticide residues in water, sediments and fishes, Heteropneustis fossilis and Puntius ticto from Kali River, India. Journal of Toxicology and Environmental Health Sciences, 8(5), 30-40. DOI: https://doi.org/10.5897/JTEHS2016.0367
  24. Maurya, P. K., Malik, D. S., Yadav, K. K., Kumar, A., Kumar, S., & Kamyab, H. (2019). Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicology Reports, 6, 472-481. DOI: https://doi.org/10.1016/j.toxrep.2019.05.012
  25. Maurya, P. K., Meenu, K., & Maddheshiya, R. (2023). Evaluation of the effect of a fungicide, dithane m-45 upon the protein content in gills, muscle, kidney and hepatopancreas of the fresh water teleost, Labeo rohita. Journal of Experimental Zoology India, 26(2), 1-11. DOI: https://doi.org/10.51470/jez.2023.26.2.1551
  26. McKenzie, D. J., Garofalo, E., Winter, M. J., Ceradini, S., Verweij, F., Day, N., & Taylor, E. W. (2007). Complex physiological traits as biomarkers of the sub-lethal toxicological effects of pollutant exposure in fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1487), 2043-2059. DOI: https://doi.org/10.1098/rstb.2007.2100
  27. Nataraj, B., Hemalatha, D., Rangasamy, B., Maharajan, K., & Ramesh, M. (2017). Hepatic oxidative stress, genotoxicity and histopathological alteration in fresh water fish Labeo rohita exposed to organophosphorus pesticide profenofos. Biocatalysis and Agricultural Biotechnology, 12, 185-190. DOI: https://doi.org/10.1016/j.bcab.2017.09.006
  28. Numan, A., Khan, M., Uddin, R., Rahman, M., Bhuiyan, M., & Akter, N. (2018). Risk assessment of commonly used major pesticides for tomato (Solanum lycopersicum L.) cultivation in Bangladesh. Advances in Nutrition and Food Science, 1(20), 109.
  29. Patil, V. K., & David, M. (2010). Behavioral and morphological endpoints: as an early response to sublethal malathion intoxication in the freshwater fish, Labeo rohita. Drug and Chemical Toxicology, 33(2), 160-165. DOI: https://doi.org/10.3109/01480540903196816
  30. Plonka, A. C., & Neff, W. H. (1969). Mucopolysaccharide histochemistry of gill epithelial secretions in brook trout exposed to acid pH. In Proceedings of the Pennsylvania Academy of Science (pp. 53-55). Pennsylvania Academy of Science.
  31. Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33, 243-255. DOI: https://doi.org/10.1007/s13593-012-0105-x
  32. Qayoom, I., Balkhi, M., Mukhtar, M., Abubakr, A., Siddiqui, U., Khan, S., & Mastinu, A. (2024). Assessing organophosphate insecticide retention in muscle tissues of juvenile common carp fish under acute toxicity tests. Toxicology Reports, 12, 253-259. DOI: https://doi.org/10.1016/j.toxrep.2024.02.002
  33. Rao, K. C. S., & Jayabhaye, U. M. (2022). Study on acute toxicity and haematological alterations induced by the exposure of diclofenac to common carp (Cyprinus carpio). Journal of Research in Agriculture and Animal Science, 9(1), 28-33.
  34. Rathnamma, V. V., & Nagaraju, B. (2013). Median lethal concentrations (LC50) of Chlorantraniliprole and its effects on behavioral changes in freshwater fish Labeo rohita. International Journal of Public Health Science, 2, 137-142. DOI: https://doi.org/10.11591/ijphs.v2i4.4208
  35. Raymundo, L. B., Gomes, D. F., Miguel, M., Moreira, R. A., & Rocha, O. (2024). Effects of acute toxicity of the pesticide Chlorpyrifos and the metal Cadmium, both individually and in mixtures, on two species of native neotropical cladocerans. Ecotoxicology, 1-11. DOI: https://doi.org/10.1007/s10646-024-02761-z
  36. Sarkar, B., Mahanty, A., Saha, A., Pal, A., Bandyapadhyay, P., Sarkar, S. K., & Ayyappan, S. (2014). Impact of Cypermethrin and Carbofuran on the Ovarian Cycle of the Indian Major Carp, Labeo rohita (Hamilton). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84, 989-996. DOI: https://doi.org/10.1007/s40011-013-0265-8
  37. Sarkar, P., Raju, V. S., Kuppusamy, G., Rahman, M. A., Elumalai, P., Harikrishnan, R., & Arockiaraj, J. (2022). Pathogenic fungi affecting fishes through their virulence molecules. Aquaculture, 548, 737553. DOI: https://doi.org/10.1016/j.aquaculture.2021.737553
  38. Scherer, E. (1992). Behavioural responses as indicators of environmental alterations: approaches, results, developments. Journal of Applied Ichthyology, 8(1‐4), 122-131. DOI: https://doi.org/10.1111/j.1439-0426.1992.tb00674.x
  39. Silva, A. L., Albinati, A. C. L., Souza, S. A., Marques, J. V. S., Andrade, I. B. M., Souza, Y. R. C., & Amorim, A. G. (2023). Evaluation of the acute and sublethal toxicity of Mancozeb in Pacamã (Lophiosilurus alexandri). Brazilian Journal of Biology, 83, e274393. DOI: https://doi.org/10.1590/1519-6984.274393
  40. Singh, N., & Saxena, B. (2021). Assessment of Behavioral Alterations in Labeo rohita Due to Acute Exposure of Heavy Metals. G-Journal of Environmental Science and Technology, 9(1&2), 13-18.
  41. Sudhakaran, B. V., & Suja, S. (2024). Ovarian Histological Analysis of Anabas testudineus as a Marker for Pesticide Residue Analysis in Freshwater Ecosystems. Toxicology International, 31(1), 93-99. DOI: https://doi.org/10.18311/ti/2024/v31i1/35720
  42. Sutili, F. J., & Gressler, L. T. (2021). Antimicrobial agents. In Aquaculture Pharmacology (pp. 131-168). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-821339-1.00004-0
  43. Szépvölgyi, J., Nagy, K., SajgónéVukán, K., Regöly-Mérei, A., Soos, K., Toth, K., & Antal, M. (1989). Subacute toxicological examination of Dithane M-45. Food and Chemical Toxicology, 27(8), 531-538. DOI: https://doi.org/10.1016/0278-6915(89)90049-5
  44. Tripathi, V. K., & Yadav, R. K. (2015). Effect of pesticide (organophosphorus) on aquatic fish Labeo rohita. International Journal of Chemical Sciences, 13(2), 625-640.
  45. Van Den Berg, A. H., McLaggan, D., Diéguez-Uribeondo, J., & Van West, P. (2013). The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biology Reviews, 27(2), 33-42. DOI: https://doi.org/10.1016/j.fbr.2013.05.001
  46. Walia, G. K., Handa, D., Kaur, H., & Kalotra, R. (2013). Behavioral and morphological changes in a freshwater fish, Labeo rohita exposed to tannery industry effluent. Zoology, 2(8), 1-10. DOI: https://doi.org/10.15373/22778179/AUG2013/169
  47. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S., & Wang, X. (2012). Oxidative stress response and histopathological changes due to atrazine and chlorpyrifos exposure in common carp. Pesticide Biochemistry and Physiology, 103(1), 74-80. DOI: https://doi.org/10.1016/j.pestbp.2012.03.007