Main Article Content

Abstract

Understanding hydrodynamic processes is crucial for examining the transport of living biomass and contaminants, including nutrients, metals, persistent organic pollutants, plastics, and suspended particles in aquatic systems. This study investigates pollution transport and influence times in the Altata-Ensenada del Pabellón (ALENPA) coastal lagoon in northwest Mexico using a vertically integrated hydrodynamic model and advection-diffusion equations. When tidal forces, freshwater discharge, and wind effects were taken into account in numerical simulations of a passive tracer release, the effect times ranged from a few weeks near the inlet to over four months in the eastern lagoon. The Culiacan River discharge and prevailing northwest winds significantly impacted these times and their spatial distribution, with areas in the southern lagoon showing slower tracer dispersion, suggesting higher vulnerability to pollution. This investigation provides insights into the hydrodynamic environment of the ALENPA lagoon, identifying regions with long and short influence times based on specific meteorological and hydrological conditions. More broadly, it enhances our understanding of pollutant transport in coastal environments, offering a valuable tool—the numerical assessment of ITD—for selecting suitable, less vulnerable sites for aquaculture or waste disposal across diverse coastal lagoons.

Keywords

Influence times Hypothetical tracer Pollutant dispersion Numerical model Gulf of California

Article Details

How to Cite
Montaño-Ley, Y., Páez-Osuna, F., Frías-Espericueta, M. G., & Soto-Jiménez, M. F. (2024). The advection-diffusion of pollutants in a complex coastal lagoon influenced by agricultural and aquaculture effluents in the southeast Gulf of California. Environment Conservation Journal, 25(4), 991–1002. https://doi.org/10.36953/ECJ.28692898

References

  1. Aldeco-Ramírez, J., Signoret-Poillon, M., Monreal-Gómez, M. A. & Salas de León, D. A. (2012). Export of materials along a tidal river channel that links coastal lagoon to the adjacent sea. Brazilian Journal of Oceanography, 60(3), 311-322. DOI: https://doi.org/10.1590/S1679-87592012000300004
  2. Backhaus, J. O. (1983). A semi-implicit scheme for the shallow water equations for the application to the shelf sea model. Continental and Shelf Research, 2, 243–254. DOI: https://doi.org/10.1016/0278-4343(82)90020-6
  3. Bergheim A., & Brinker A. (2003). Effluent treatment for flow through systems and European and environmental regulations. Aquaculture Engineering, 27, 61–77. DOI: https://doi.org/10.1016/S0144-8609(02)00041-9
  4. Buffoni, G., Falco, P., Griffa, A., & Zambianchi, E. (1997). Dispersion processes and residence times in a semi-enclosed basin with recirculating gyres. The case of the Tyrrhenian sea. Journal of Geophysical Research, 102(8), 699-713 DOI: https://doi.org/10.1029/96JC03862
  5. Carbajal, N., Souza, A., & Durazo, R. (1997). A numerical study of the ex-ROFI of the Colorado River. Journal of Marine Systems, 12, 17–33. DOI: https://doi.org/10.1016/S0924-7963(96)00086-3
  6. Carbajal, N., Montaño-Ley, y., Páez-Osuna, F., & Guevara-Macías, M.J. (2018). The bedload sediment transport in a Altata Ensenada del Pabellón, a coastal lagoon located in the Gulf of California. Journal of Coastal Research, 22, 209-217. DOI: https://doi.org/10.1007/s11852-018-0603-3
  7. Cardoso-Mohedano, J. G., Bernardello, R., Sanchez-Cabeza, J.A., Molino-Minero-Re, E.., Ruiz-Fernández, A.C. & Cruzado, A. (2015). Accumulation of conservative substances in a sub-tropical coastal lagoon. Estuarine Coastal and Shelf Science, 164, 1-9. DOI: https://doi.org/10.1016/j.ecss.2015.06.022
  8. Carvalho, F.P., Fowler, S. W., Gonzalez‐Farias, F., Mee, I.D & Readman, J. W. (1996). Agrochemical residues in the Altata‐Ensenada del Pabellon coastal lagoon (Sinaloa, Mexico): A need for integrated coastal zone management. International Journal of Environmental Health Research, 6, 209-220 DOI: https://doi.org/10.1080/09603129609356892
  9. Crank, J. (1979). The Mathematics of Diffusion. Oxford Science Publications, Second Edition, Oxford, UK.
  10. Cucco, A., & Umgiesser, G. (2006). Modeling the Venice Lagoon residence time. Ecological Modelling, 193, 34-51. DOI: https://doi.org/10.1016/j.ecolmodel.2005.07.043
  11. Delhez, E.J.M., de Brye, B., de Brauwere, A., & Deleersnijder, E. (2014). Residence time vs influence time. Journal of Marine Systems, 132, 185–195 DOI: https://doi.org/10.1016/j.jmarsys.2013.12.005
  12. Dick, S. & Schonfeld, W. (1996). Water transport and mixing in the North Frisian Wadden Sea. Results of numerical investigations. German Journal of Hydrography 48, 27-48. DOI: https://doi.org/10.1007/BF02794051
  13. Fugate, D.C., Friedricks, C. T. & Bilgil, A. (2005). Estimation of the residence time in a shallow back barrier lagoon, Hog Island Bay, Virginia, USA. In: Estuarine and Coastal Modeling 2005, Ed. Malcom Spaulding. Proceedings of the Ninth Int. Conference on Estuarine and Coastal Modeling, 319-337. DOI: https://doi.org/10.1061/40876(209)19
  14. Gilmartin, M. & Revelante, N. (1978). The phytoplankton characteristics of the barrier island lagoons of the Gulf of California. Estuarine, Coastal and Shelf Science, 7, 29-47. DOI: https://doi.org/10.1016/0302-3524(78)90055-5
  15. Gilly, W., Markaida, U., Daniel, P., Frawley, T., Robinson, C., Gómez-Gutiérrez, J., Hyun, D., Soliman, J., Pandey, P., & Rosenzweig, L. (2022). Long-term hydrographic changes in the Gulf of California and ecological impacts: A crack in the World’s Aquarium?. Progress in Oceanography, 206, 102857. DOI: https://doi.org/10.1016/j.pocean.2022.102857
  16. Jiao, J., and Post, V. (2019). Coastal hydrogeology. Cambridge University Press. DOI: https://doi.org/10.1017/9781139344142
  17. López-Aguiar, L.K. (2006). Distribución espacial y estacional de las principales especies químicas del nitrógeno en aguas de las lagunas costeras de Sinaloa. Universidad Nacional Autónoma de México, México, Tesis de Maestría.
  18. Monsen, N. E., Cloern, J. E., Lucas, L. V., & Monismith, S. G. (2002). A comment on the use of flushing time, residence time and age as transport time scales Limnology and Oceanography, 47(5), 1545-1553. DOI: https://doi.org/10.4319/lo.2002.47.5.1545
  19. Mahanty, M.M, Mohanty, P.K., Pattnaik, A.K., Panda, U.S., Pradhan, S., & Samal, R.N. (2016). Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: measurement and modeling. Continental Shelf Research, 125, 28-43. DOI: https://doi.org/10.1016/j.csr.2016.06.017
  20. Malhadas, M.S., Neves, R.J., Leitao, P.C., & Silva, A. (2010). Influence of tide and waves on water renewal in Obidos Lagoon, Portugal. Ocean Dynamics, 60, 41–55 DOI: https://doi.org/10.1007/s10236-009-0240-3
  21. Martínez-Suástegui, L., & Treviño, C. (2018). Mathematical model of tidal water transport by a partial blockage of a coastal lagoon. Applied Mathematical Modelling, 60, 592-605. DOI: https://doi.org/10.1016/j.apm.2018.03.033
  22. Montaño-Ley, Y., & F. Páez-Osuna. (1994). Transporte de material sedimentario en suspensión y como carga de fondo en el Sistema Lagunar de Altata-Ensenada del Pabellón, México. Geofísica Internacional, Univ. Nal. Autón. México. 33 (2), 271-282. DOI: https://doi.org/10.22201/igeof.00167169p.1994.33.2.475
  23. Montaño-Ley, Y., Peraza-Vizcarra, R. & Páez-Osuna F. (2007) The tidal hydrodynamics modelling of the Topolobampo coastal lagoon system and the implications for pollutant dispersion. Environmental Pollution, 147, 282-290. DOI: https://doi.org/10.1016/j.envpol.2006.07.007
  24. Montaño- Ley, Y., & Páez-Osuna, F. (2014). Assessment of the tidal currents and pollutants dynamics associated with shrimp aquaculture effluents in SAMARE coastal lagoon (NW Mexico). Aquaculture Research, 45(8), 1269-1282. DOI: https://doi.org/10.1111/are.12071
  25. Montaño-Ley Y., & Soto-Jiménez M.F. (2019) A numerical investigation of the influence time distribution in a shallow coastal lagoon environment of the Gulf of California. Environmental Fluid Mechanics, 19(1),137–155. DOI: https://doi.org/10.1007/s10652-018-9619-3
  26. Montaño-Ley, Y., Soto-Jiménez, M. F., & Páez-Osuna, F. (2023). Seabed morphodynamics of a coastal lagoon of the Gulf of California. Environmental Fluid Mechanics, 23(3), 533-549. DOI: https://doi.org/10.1007/s10652-023-09916-2
  27. Nuñez-Riboni, I. (2000). Dinámica y procesos dispersivos en el complejo lagunar Bahía de Altata / Ensenada del Pabellón, Sinaloa. Tesis de Maestria. Univ. Nal. Auton. Mex. 93 pp.
  28. Páez-Osuna, F., Bojórquez-Leyva, H. & Green- Ruiz, C. (1998). Total carbohydrates: organic carbon in lagoon sediments as an indicator of organic effluents from agriculture and sugar-cane industry. Environmental Pollution 102(2&3), 321-326. DOI: https://doi.org/10.1016/S0269-7491(98)00045-1
  29. Páez-Osuna, F., Álvarez-Borrego, S., Ruiz-Fernández, A. C., García-Hernández, J., Jara-Marini, M. E., Bergés-Tiznado, M. E., Soto-Jiménez, M. F., Frías-Espericueta, M. G., Ruelas-Inzunza, J. R., Green-Ruiz, C. R., Osuna-Martínez, C. C., & Sanchez-Cabeza, J. A. (2017). Environmental status of the Gulf of California: a pollution review. Earth-Science Reviews, 166, 181-205. DOI: https://doi.org/10.1016/j.earscirev.2017.01.014
  30. Páez-Osuna, F., Ramírez-Reséndiz, G., Ruiz-Fernández, A.C., & Soto-Jiménez, M.F. (2007). La contaminación por nitrógeno y fósforo en Sinaloa: flujos, Fuentes, efectos y opciones de manejo. In: Serie Lagunas Costeras de Sinaloa (F. Páez-Osuna (Ed.)).
  31. Parés-Sierra A., Mascarenhas A., Marinone S. G., & Castro R. (2003). Temporal and spatial variation of the surface winds in the Gulf of California. Geophysical Research Letter, 30(6), 1312–1321 DOI: https://doi.org/10.1029/2002GL016716
  32. Patgaonkar, R.S., Vethamony, P., Lokesh, K.S. & Babu, M.T. (2012). Residence time of pollutants discharged in the Gulf of Kachchh, northwestern Arabian Sea. Marine Pollution Bulletin 64, 1659-1666.-Vizcarra, R. (1973). Características Hidrográficas y sedimentarias del sistema estuarino bahía Altata-Ensenada del Pabellón. Universidad Autónoma de Baja California. Tesis de Licenciatura. DOI: https://doi.org/10.1016/j.marpolbul.2012.05.033
  33. Spaulding, M.L. (1994). Modeling of circulation and dispersion in coastal lagoons. In: Coastal Lagoon Processes. (ed. by B. Kjerfve). Elsevier Science Publishers, Amsterdam. DOI: https://doi.org/10.1016/S0422-9894(08)70010-2
  34. Takeoka, H. (1984a). Exchange and transport time scales in the Seto Inland Sea. Continental Shelf Research. 3(4), 327-341. DOI: https://doi.org/10.1016/0278-4343(84)90015-3
  35. Takeoka, H. (1984b). Fundamental concepts of exchange and transport time scales in a coastal sea. Continental Shelf Research, 3(3), 311-326. DOI: https://doi.org/10.1016/0278-4343(84)90014-1
  36. Umgiesser, G., Ferrarin, C., Cucco, A., DePascalis, F, Bellafiore, D., Ghezzo, M. & Bajo, M. (2014). Comparative hydrodynamics of 10 Mediterranean lagoons by means of numerical modeling. Journal of Geophysical research Oceans,119, 4, 2212-2226. DOI: https://doi.org/10.1002/2013JC009512
  37. Valladolid-Garnica, D. E., Jara-Marini, M. E., Torres-Rojas, Y. E., & Soto-Jiménez, M. F. (2023). Distribution, bioaccumulation, and trace element transfer among trophic levels in the southeastern Gulf of California. Marine Pollution Bulletin, 194, 115290. DOI: https://doi.org/10.1016/j.marpolbul.2023.115290
  38. Vallino, J. J. & Hopkinson, C. S., Jr. (1998). Estimation of dispersion and characteristic mixing times in Plum Island Sound Estuary. Estuarine, Coastal and Shelf Science, 46, 333-350. DOI: https://doi.org/10.1006/ecss.1997.0281
  39. Velázquez-Ochoa, R., Ochoa-Izaguirre, M. J., & Soto-Jiménez, M. F. (2022). An analysis of the variability in δ 13 C in macroalgae from the Gulf of California: indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation. Biogeosciences, 19(1), 1-27. DOI: https://doi.org/10.5194/bg-19-1-2022
  40. Wan, Y., Qiu, Ch., Doering, P., Ashton, M., Sun, D., & Coley, T. (2013). Modeling residence time with a three-dimensional hydrodynamical model: Linkage with chlorophyll in a subtropical estuary. Ecological Modeling, 268, 93-102 DOI: https://doi.org/10.1016/j.ecolmodel.2013.08.008