Main Article Content

Abstract

Water is the lifeline of our planet, essential for all forms of life to thrive. Its presence sustains ecosystems, regulates climate, and is crucial for human health and agriculture. As a universal solvent, water plays a vital role in shaping landscapes and supporting biodiversity, making it indispensable for the health and sustainability of both life and Earth. The present study exposed the freshwater fish Cirrhinus mrigala to aluminum chloride to evaluate its toxicological effects. This study determined the lethal concentration (LC50) of aluminum chloride in the freshwater fish Cirrhinus mrigala to be 0.087 ml/L after 24, 48, 72, and 96 hours. In order to evaluate the toxicological effects of aluminum chloride on brain tissues of Cirrhinus mrigala, the sublethal concentration (1/10th of LC50),.e., 0.0087 ml/L, was given to the fishes for 7, 14, 21, and 28 days. After exposing the fish Cirrhinus mrigala to aluminum chloride for 7, 14, 21, and 28 days, we observed behavioral changes like erratic swimming, hyperventilation, and aggressiveness. In the present study, after the exposure of aluminum chloride sublethal concentration to Cirrhinus mrigala, observed histological alterations in the brain tissues revealed by the necrosis in nerve cells, edema, aggregation of glial cells, and structural degeneration during the acute study, when compared to the control group. The overall results emphasize the necessity of rigorous monitoring and regulation to mitigate the adverse effects of pollutants on freshwater ecosystems and their inhabitants. by prioritizing the preservation of water quality to safeguard the delicate balance of aquatic life within these vital habitats for the benefit of both current and future generations. More studies on the effects of such chemical substances are required to be done in the fields of aquatic toxicology.

Keywords

Heavy metal Histology Toxicity White carp

Article Details

How to Cite
Rani, R., & Pandey, S. (2024). Alteration in brain histology of fresh water fish Cirrhinus mrigala after acute exposure of aluminium chloride (AlCl3) . Environment Conservation Journal, 25(4), 1021–1029. https://doi.org/10.36953/ECJ.28472881

References

  1. Ardeshir, R.A., Zolgharnein, H., Movahedinia, A. & Salamat, N. (2017). Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish (Rutilus frisii) on acute toxicity and histopathology. Toxicology Reports, 4, 348-357 DOI: https://doi.org/10.1016/j.toxrep.2017.06.010
  2. Arslan, H., Ozdemir, S. & Altun, S. (2017). Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.), Chemosphere 180, 491-499. DOI: https://doi.org/10.1016/j.chemosphere.2017.04.057
  3. Aslam, J., Javed, M., Latif, F., Kousar, S., & Iqbal, R. (2023).Toxicological effects of tertiary mixture of metals on the oxidative stress in Cirrhinus mrigala & Labeo rohita. Pakistan Journal of Biotechnology, 20(01), 93–99. https://doi.org/10.34016/pjbt.2023.20.01.28 DOI: https://doi.org/10.34016/pjbt.2023.20.01.280
  4. Azmat, H., Javed, M. & Jabeed, G. (2012). Acute Toxicity of Aluminium to the Fish (Catla catla, Labeo rohita and Cirrhinus mrigala). Pakistan Veterinary Journal,32(1),85-87.
  5. Bancroft J.D. & Gamble M. (2002).Theory and Practice of Histological and Histochemical Techniques. 5th Edition, Butter Worths. 211-220, 657-669.
  6. Banavathu, SN., Rao, N., Ramavathu, N. & Mude, JN. (2016). Acute toxicity of mercuric chloride (HgCl2) on survival and behavioural responses of freshwater fish Labeo rohita (Hamilton). International Journal of Fisheries and Aquatic Studies, 4(5), 323-327.
  7. Bureau Of Indian Standards (BIS), Indian Standards Drinking Water- Specification (Second Revision), 2012.
  8. Carleton, HM., Druruy, RAB. & Wallington , EA. (1967). Carleton’s histological technique.
  9. Chandra, S. J., Vishwaprakash, M. P., Saqib, A., Sukumaran, S. & Sharath, C. SP. (2020),Barium Chloride impairs physiology and brain glutamate in Cirrhinus mrigala during a short period of interaction. Egyptian Journal of Aquatic Biology and Fisheries,58,(24) 7, 995-1003. DOI: https://doi.org/10.21608/ejabf.2020.144745
  10. Emergency Response Guidebook (2020), U.S. Department of transportation pipeline and Hazardous materials safety administration, Guide 13743, 97, 210-211.
  11. Finney, DJ. (1971), Probit analysis: A statistical treatment of the sigmoid response curve, second edition, Cambridge university press.
  12. Gebara, RC., Gonçalves, Alho, Abreu, CB., Mansano, A., Moreira, RA., Rocha, GS. & Gama Melão M. (2021). Toxicity and Risk Assessment of Zinc and Aluminum Mixtures to Ceriodaphnia silvestrii. Environmental Toxicology and Chemistry, 40(10), 2912-2922. DOI: https://doi.org/10.1002/etc.5162
  13. Hadi A.A., & Alwan S.F. (2012), Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminum. International Journal of Pharmacy and Life Sciences, 3(11), 2071-2081.
  14. Hazardous Substance fact Sheet (2008), New Jersey Department of Health.
  15. How much water is in the ocean? NOAA, National Ocean Service, National Ocean and Atmospheric Service. https://oceanservice.noaa.gov/facts/oceanwater.html.
  16. Igbokwe, IO., Igwenagu, E. & Igbokwe, NA., (2019). Aluminium toxicosis: a review of toxic actions and effects .Interdisciplinary Toxicology, 12(2);45-70. doi: 10.2478/intox-2019-0007. DOI: https://doi.org/10.2478/intox-2019-0007
  17. Jaishankar, M., Tsenten, T., Anbalagan, N., Mathew, BB. & Beeregowda, KN.(2014).Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2) 60-72. DOI: https://doi.org/10.2478/intox-2014-0009
  18. Kaoud H.A., & El-Dahshan A.R. (2010), Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nature and Science,8(4). 147-156.
  19. Lakshmaiah, G. (2016). A study on the effect of organophosphorus insecticide phorateon brain histology of the common carp Cyprinus carpio. International Journal of Fauna and Biological Studies, 3(4) 39-43
  20. Lakshmaiah G. (2017), Brain histopathology of the fish Cyprinus carpio exposed to lethal concentration of an organophosphate insecticide phorate. International Journal for Advance Research and Development, 2, 668-672. DOI: https://doi.org/10.7439/ijasr.v2i4.3233
  21. Mishra, A., & Behera, B. (2023). Effect of mercury on histological alterations in gill, liver and stomach tissues of Indian catfish, Clarias batrachus. Journal of Applied and Natural Science,15(2), 685-691. DOI: https://doi.org/10.31018/jans.v15i2.4467
  22. Mitra, S., Sarkar, SK., Raja, P. Biswas, JK. & Murugan K. (2018). Dissolved trace elements in Hooghly (Ganges) River Estuary, India: Risk assessment and implications for management. Marine Pollution Bulletin, 133, 402-414.Narendiran, NJ., Pugazhvendan, SR.,Kumaran, RG., Kumaran, S. & Alagappan, KM. (2009). Effect of malathion toxicity in the freshwater fish Ophiocephalus punctatus-A histological and histochemical study. World Journal of Fish and Marine Sciences, 1(3), 218-224. DOI: https://doi.org/10.1016/j.marpolbul.2018.05.057
  23. Othman ,MS., Yakub, N., Ramle, Nur-A. & Abas, A. (2013). Comparative toxicity of eight metals on freshwater fish. Toxicology and Industrial Health, 31(9), 1-10. DOI: https://doi.org/10.1177/0748233712472519
  24. Paul, BN., Sridhar, N., Chanda, S., Saha, GS. & Giri, SS. (2016). Nutrition facts Cirrhinus mrigala (Mrigal). ICAR- Central Institute of Freshwater Aquaculture, Kausalyanga, Bhubaneswar, Odisha, India.
  25. Porter, KR., & Joseph,. Blum. (1953). A study in microtomy in electron microscopy, The anatomical record. DOI: https://doi.org/10.1002/ar.1091170403
  26. Pundir G. (2016), Behavioural manifestations in Teleost, Clarias batrachus after exposure to heavy metal, Cadmium sulphate. Voyager- A Journal of Sciences- Life Sciences, 8, 1-5.
  27. Rahi, M., & Singh RK. (2024). Accumulation and histopathological effect of different tissue in the freshwater fish Catla catla. International Journal of Science and Research, 13(1), 374-379. DOI: https://doi.org/10.21275/SR24102214416
  28. Saha, P., & Paul, B. (2019), Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment: An International Journal, 25(4), 966–987. DOI: https://doi.org/10.1080/10807039.2018.1458595
  29. Sarareh, S., Alireza, S., Bita, A., Ahmed, S. & Rahim, A., (2013). Brain Anatomy and Histology of Orange Spotted Grouper (Epinephelus coioides). Journal of the Persian Gulf, 4(14), 1-13.
  30. Senger, MR., Seibt, KJ, Ghisleni, GC, Dias RD., Bogo, MR. & Bonam, CD. (2011). Aluminum exposure alters behavioral parameters and increases acetylcholinesterase activity in zebrafish (Danio rerio) brain. Cell Biology and Toxicology, 27, 199-205. DOI: https://doi.org/10.1007/s10565-011-9181-y
  31. Silva S. (2012), Aluminium toxicity targets in plants. Journal of Botany, 1-8. DOI: https://doi.org/10.1155/2012/219462
  32. Singh A.K., Rana K.S. & Sharma K. (2019), Chromium, nickel and zinc induced histopathological alteration in the liver of Indian common carp Labeo rohita (Ham.). International Archive of Applied Sciences and Technology, 10(2), 49-55.
  33. Subramani L., Mathan R. Chokkalingam K., & Annamalai M. (2010), Hematological,biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere, 82(2011), 977-985. DOI: https://doi.org/10.1016/j.chemosphere.2010.10.071
  34. Tuba R., Saima N., Riaz H., Ahmad M.M.C., Fayyaz A., Asma Y., Rabia A., Huma N. & Ansar S. (2021), Exposure to heavy metals causes histopathological changes and alters antioxidant enzymes in fresh water fish (Oreochromis niloticus). Asian journal of agriculture and biology, 1, 1-11. DOI: https://doi.org/10.35495/ajab.2020.03.143
  35. Ullah A., Heng S., Munis M.F.H., Fhad S., & Yang X. (2015), Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environmental and Experimental Botany, 117, 28-40. DOI: https://doi.org/10.1016/j.envexpbot.2015.05.001
  36. Vidhya P.V., & Chitra K.C. (2018), Aluminium oxide nanoparticles induced irrevocable damages in gill, liver and brain tissues of freshwater fish, Oreochromis mossambicus (Peters, 1852). International Journal of Fisheries and Aquatic Research, 3(2), 13-17.
  37. Vidya P.V. &Chitra K.C. (2018), Sublethal effects of silicon dioxide nanoparticles on the structure of gill, liver and brain tissues in the fish, Oreochromis mossambicus (Peters, 1852). International Journal of Applied Research, 4(4), 228-232.
  38. Vinodhini R. & Narayanan M. (2008), Heavy metal induced histopathological alterations in selected organs of the Cyprinus carpio L. (Common Carp). International Journal Environmental Research, 3(1), 95-100.
  39. Wang, L., Al-sawafi, AGA., & Yan, Y. (2017), Cadmium accumulation and its histological effects on brain and skeletal muscle of Zebra fish. Journal of Heavy Metal Toxicity and Diseases, 2(1:2), 1-6.
  40. Xing, H., Li, S., Wang, Z., Gao, X., Xu, S. & Wang, X. (2012), Histopathological changes and antioxidant response in brain and kidney of common carp exposed to atrazine and chlorpyrifos. Chemosphere, 88, 377-383. DOI: https://doi.org/10.1016/j.chemosphere.2012.02.049
  41. Zahedi S., Vaezzade H., Rafati M. & Dangesaraki M. (2014), Acute toxicity and accumulation of iron, manganese and aluminium in caspian kutum fish (Rutilus kutum). Iranian Journal of Toxicology, 8(24).