Main Article Content
Abstract
Diseases and pests in plants/crops are major causes of significant agricultural losses with economic, social and ecological impacts. Therefore, there is a need for early identification of plant diseases and pests through automated systems. Recently, machine learning-based methods have become popular in solving agricultural problems such as plant diseases faced by technically-noob farmers. This work proposes a novel method based on stacking ensemble machine learning to detect plant diseases in Uradbean precisely. Two classifiers: support vector machine (SVM), random forest (RF) are trained on a dataset consists of Uradbean infected and healthy leaf images. These classifiers are stacked with logistic regression (LR) classifier. In the diverse ensemble, LR classifier is used as a meta-learner which enhanced the precision of the disease classification. The fuzzy C-Means clustering with particle swarm optimization is used for image segmentation. Haralick, Hu Moments and color histogram methods are used in feature extraction. During the tests, the proposed model is also compared with pre-trained networks: DenseNet-201, ResNet-50, and VGG19. It achieved an impressive classification accuracy of 96.82 % which is higher than the individual classifiers and pre-trained networks. To validate model performance, it is evaluated on a benchmark public dataset consists of Apple leaf images and achieved 98.30% accuracy. It is observed that ensemble method reflects an advantage over individual models in increasing the classification rates and reducing the computational overhead in comparison to pre-trained networks which struggle due to the issues such as irrelevant features, generation of pertinent characteristics, and noise
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ahmed, I., & Yadav, P. K. (2023). Plant disease detection using machine learning approaches. Expert Systems, 40(5), e13136. https://doi.org/10.1111/exsy.13136 DOI: https://doi.org/10.1111/exsy.13136
- Barbedo, J. G. A. (2016). A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Engineering, 144, 52–60. https://doi.org/10.1016/j.biosystemseng.2016.01.017 DOI: https://doi.org/10.1016/j.biosystemseng.2016.01.017
- C, N., & S, K. (2024). Cucumber Leaf Disease Detection using GLCM Features with Random Forest Algorithm. International Research Journal of Multidisciplinary Technovation, 6(1), 40–50. https://doi.org/10.54392/irjmt2414 DOI: https://doi.org/10.54392/irjmt2414
- Chakraborty, S., Paul, S., & Rahat-uz-Zaman, M. (2021). Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 147–151. https://doi.org/10.1109/ICREST51555.2021.9331132 DOI: https://doi.org/10.1109/ICREST51555.2021.9331132
- Chen, J., Zeb, A., Nanehkaran, Y. A., & Zhang, D. (2023). Stacking ensemble model of deep learning for plant disease recognition. Journal of Ambient Intelligence and Humanized Computing, 14(9), 12359–12372. https://doi.org/10.1007/s12652-022-04334-6 DOI: https://doi.org/10.1007/s12652-022-04334-6
- Chouhan, S. S., Kaul, A., & Singh, U. P. (2019). Image Segmentation Using Computational Intelligence Techniques: Review. In Archives of Computational Methods in Engineering (Vol. 26). https://doi.org/10.1007/s11831-018-9257-4 DOI: https://doi.org/10.1007/s11831-018-9257-4
- Deshapande, A. S., Giraddi, S. G., Karibasappa, K. G., & Desai, S. D. (2019). Fungal Disease Detection in Maize Leaves Using Haar Wavelet Features. https://doi.org/10.1007/978-981-13-1742-2 DOI: https://doi.org/10.1007/978-981-13-1742-2_27
- FAO, IFAD, WHO, UNICEF, W. (2020). The State of Food Security and Nutrition in the World 2020. https://doi.org/10.4060/ca9692en DOI: https://doi.org/10.4060/ca9692en
- Goel, L., & Nagpal, J. (2023). A Systematic Review of Recent Machine Learning Techniques for Plant Disease Identification and Classification. IETE Technical Review, 40(3), 423–439. https://doi.org/10.1080/02564602.2022.2121772 DOI: https://doi.org/10.1080/02564602.2022.2121772
- Hughes, D. P., & Salathe, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. Retrieved from http://arxiv.org/abs/1511.08060
- Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3(June 2022), 100081. https://doi.org/10.1016/j.atech.2022.100081 DOI: https://doi.org/10.1016/j.atech.2022.100081
- Khan, M. A., Lali, M. I. U., Sharif, M., Javed, K., Aurangzeb, K., Haider, S. I., … Akram, T. (2020). Correction to “An Optimized Method for Segmentation and Classification of Apple Diseases Based on Strong Correlation and Genetic Algorithm Based Feature Selection.” IEEE Access, 8, 36514–36514.https://doi.org/10.1109/ACCESS.2020.2974161 DOI: https://doi.org/10.1109/ACCESS.2020.2974161
- Kodors, S., Lacis, G., Sokolova, O., Zhukovs, V., & Apeinans, I. (2021). Apple scab detection using CNN and Transfer Learning. Agronomy Research, 19. https://doi.org/https://doi.org/10.15159/ar.21.045
- Kumar Sahu, S., & Pandey, M. (2023). An optimal hybrid multiclass SVM for plant leaf disease detection using spatial Fuzzy C-Means model. Expert Systems with Applications, 214, 118989. https://doi.org/10.1016/j.eswa.2022.118989 DOI: https://doi.org/10.1016/j.eswa.2022.118989
- Kusumo, B. S., Heryana, A., Mahendra, O., & Pardede, H. F. (2019). Machine Learning-based for Automatic Detection of Corn-Plant Diseases Using Image Processing. 2018 International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Machine Learning for Computing Applications, IC3INA 2018 - Proceeding, 93–97. https://doi.org/10.1109/IC3INA.2018.8629507 DOI: https://doi.org/10.1109/IC3INA.2018.8629507
- Liu, Q., Zuo, S., Peng, S., Zhang, H., Peng, Y., Li, W., … Kang, H. (2024). Development of Machine Learning Methods for Accurate Prediction of Plant Disease Resistance. Engineering. https://doi.org/10.1016/j.eng.2024.03.014 DOI: https://doi.org/10.1016/j.eng.2024.03.014
- Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science, 7(September), 1–10. https://doi.org/10.3389/fpls.2016.01419 DOI: https://doi.org/10.3389/fpls.2016.01419
- Morchid, A., Marhoun, M., El Alami, R., & Boukili, B. (2024). Intelligent detection for sustainable agriculture: A review of IoT-based embedded systems, cloud platforms, DL, and ML for plant disease detection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18392-9 DOI: https://doi.org/10.1007/s11042-024-18392-9
- Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2019). Automated leaf disease detection in di ff erent crop species through image features analysis and One Class Classi fi ers. Computers and Electronics in Agriculture, 156(July 2018), 96–104. https://doi.org/10.1016/j.compag.2018.11.005 DOI: https://doi.org/10.1016/j.compag.2018.11.005
- Pradhan, P., Kumar, B., & Mohan, S. (2022). Comparison of various deep convolutional neural network models to discriminate apple leaf diseases using transfer learning. Journal of Plant Diseases and Protection, 129(6), 1461–1473. https://doi.org/10.1007/s41348-022-00660-1 DOI: https://doi.org/10.1007/s41348-022-00660-1
- Rehman, Z. ur, Khan, M. A., Ahmed, F., Damaševičius, R., Naqvi, S. R., Nisar, W., & Javed, K. (2021). Recognizing apple leaf diseases using a novel parallel real‐time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture. IET Image Processing, 15(10), 2157–2168. https://doi.org/10.1049/ipr2.12183 DOI: https://doi.org/10.1049/ipr2.12183
- S.K., P. K., Sumithra, M. G., & Saranya, N. (2021). Particle Swarm Optimization (PSO) with fuzzy c means (PSO‐FCM)–based segmentation and machine learning classifier for leaf diseases prediction. Concurrency and Computation: Practice and Experience, 33(3), 1–13. https://doi.org/10.1002/cpe.5312 DOI: https://doi.org/10.1002/cpe.5312
- Sharif, M., Attique, M., Iqbal, Z., Faisal, M., Ullah, M. I., & Younus, M. (2018). Detection and classi fi cation of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture, 150(May 2017), 220–234. https://doi.org/10.1016/j.compag.2018.04.023 DOI: https://doi.org/10.1016/j.compag.2018.04.023
- Shrivastava, V. K., & Pradhan, M. K. (2021). Rice plant disease classification using color features: a machine learning paradigm. Journal of Plant Pathology, 103(1), 17–26. https://doi.org/10.1007/s42161-020-00683-3 DOI: https://doi.org/10.1007/s42161-020-00683-3
- Singh, K., Kumar, S., & Kaur, P. (2019). Automatic detection of rust disease of Lentil by machine learning system using microscopic images. International Journal of Electrical and Computer Engineering, 9(1), 660–666. https://doi.org/10.11591/ijece.v9i1.pp.660-666 DOI: https://doi.org/10.11591/ijece.v9i1.pp660-666
- Singla, R. S., Gupta, A., Gupta, R., Tripathi, V., Naruka, M. S., & Awasthi, S. (2023). Plant Disease Classification Using Machine Learning. 2023 International Conference on Disruptive Technologies (ICDT), 409–413. https://doi.org/10.1109/ICDT57929.2023.10151118 DOI: https://doi.org/10.1109/ICDT57929.2023.10151118
- Srinivas, L. N. B., Bharathy, A. M. V., Ramakuri, S. K., Sethy, A., & Kumar, R. (2024). An optimized machine learning framework for crop disease detection. Multimedia Tools and Applications, 83(1), 1539–1558. https://doi.org/10.1007/s11042-023-15446-2 DOI: https://doi.org/10.1007/s11042-023-15446-2
- Tahir, M. Bin, Khan, M. A., Javed, K., Kadry, S., Zhang, Y.-D., Akram, T., & Nazir, M. (2021). Recognition of Apple Leaf Diseases using Deep Learning and Variances-Controlled Features Reduction. Microprocessors and Microsystems, 104027. https://doi.org/10.1016/j.micpro.2021.104027 DOI: https://doi.org/10.1016/j.micpro.2021.104027
- Thiagarajan, J. D., Kulkarni, S. V., Jadhav, S. A., Waghe, A. A., Raja, S. P., Rajagopal, S., … Subramaniam, S. (2024). Analysis of banana plant health using machine learning techniques. Scientific Reports, 14(1), 15041. https://doi.org/10.1038/s41598-024-63930-y DOI: https://doi.org/10.1038/s41598-024-63930-y
- Umamageswari, A., Bharathiraja, N., & Irene, D. S. (2023). A Novel Fuzzy C-Means based Chameleon Swarm Algorithm for Segmentation and Progressive Neural Architecture Search for Plant Disease Classification. ICT Express, 9(2), 160–167. https://doi.org/10.1016/j.icte.2021.08.019 DOI: https://doi.org/10.1016/j.icte.2021.08.019
- Vij, P., & Chopra, T. (2024). Classification System for Plant Leaf Diseases Using a Hybrid Machine Learning Model. Nanotechnology Perceptions, 20(S4), 193–204. https://doi.org/10.62441/nano-ntp.v20iS4.17 DOI: https://doi.org/10.62441/nano-ntp.v20iS4.17
- Vishnoi, V. K., Kumar, K., & Kumar, B. (2021a). Crop Disease Classification Through Image Processing and Machine Learning Techniques Using Leaf Images. Proceedings of the 1st International Conference on Advances in Computing and Future Communication Technologies, ICACFCT 2021, (December),27–32.https://doi.org/10.1109/ICACFCT5397 8.2021.9837353 DOI: https://doi.org/10.1109/ICACFCT53978.2021.9837353
- Vishnoi, V. K., Kumar, K., & Kumar, B. (2021b). Plant disease detection using computational intelligence and image processing. Journal of Plant Diseases and Protection, 128(1), 19–53. https://doi.org/10.1007/s41348-020-00368-0 DOI: https://doi.org/10.1007/s41348-020-00368-0
- Vishnoi, V. K., Kumar, K., & Kumar, B. (2022). A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimedia Tools and Applications, 81(1), 367–419. https://doi.org/10.1007/s11042-021-11375-0 DOI: https://doi.org/10.1007/s11042-021-11375-0
- Vishnoi, V. K., Kumar, K., Kumar, B., Mohan, S., & Khan, A. A. (2023). Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network. IEEE Access, 11(November 2022), 6594–6609. https://doi.org/10.1109/ACCESS.2022.3232917 DOI: https://doi.org/10.1109/ACCESS.2022.3232917
- Xian, T. S., & Ngadiran, R. (2021). Plant Diseases Classification using Machine Learning. Journal of Physics: Conference Series, 1962(1), 012024. https://doi.org/10.1088/1742-6596/1962/1/012024 DOI: https://doi.org/10.1088/1742-6596/1962/1/012024
References
Ahmed, I., & Yadav, P. K. (2023). Plant disease detection using machine learning approaches. Expert Systems, 40(5), e13136. https://doi.org/10.1111/exsy.13136 DOI: https://doi.org/10.1111/exsy.13136
Barbedo, J. G. A. (2016). A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Engineering, 144, 52–60. https://doi.org/10.1016/j.biosystemseng.2016.01.017 DOI: https://doi.org/10.1016/j.biosystemseng.2016.01.017
C, N., & S, K. (2024). Cucumber Leaf Disease Detection using GLCM Features with Random Forest Algorithm. International Research Journal of Multidisciplinary Technovation, 6(1), 40–50. https://doi.org/10.54392/irjmt2414 DOI: https://doi.org/10.54392/irjmt2414
Chakraborty, S., Paul, S., & Rahat-uz-Zaman, M. (2021). Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 147–151. https://doi.org/10.1109/ICREST51555.2021.9331132 DOI: https://doi.org/10.1109/ICREST51555.2021.9331132
Chen, J., Zeb, A., Nanehkaran, Y. A., & Zhang, D. (2023). Stacking ensemble model of deep learning for plant disease recognition. Journal of Ambient Intelligence and Humanized Computing, 14(9), 12359–12372. https://doi.org/10.1007/s12652-022-04334-6 DOI: https://doi.org/10.1007/s12652-022-04334-6
Chouhan, S. S., Kaul, A., & Singh, U. P. (2019). Image Segmentation Using Computational Intelligence Techniques: Review. In Archives of Computational Methods in Engineering (Vol. 26). https://doi.org/10.1007/s11831-018-9257-4 DOI: https://doi.org/10.1007/s11831-018-9257-4
Deshapande, A. S., Giraddi, S. G., Karibasappa, K. G., & Desai, S. D. (2019). Fungal Disease Detection in Maize Leaves Using Haar Wavelet Features. https://doi.org/10.1007/978-981-13-1742-2 DOI: https://doi.org/10.1007/978-981-13-1742-2_27
FAO, IFAD, WHO, UNICEF, W. (2020). The State of Food Security and Nutrition in the World 2020. https://doi.org/10.4060/ca9692en DOI: https://doi.org/10.4060/ca9692en
Goel, L., & Nagpal, J. (2023). A Systematic Review of Recent Machine Learning Techniques for Plant Disease Identification and Classification. IETE Technical Review, 40(3), 423–439. https://doi.org/10.1080/02564602.2022.2121772 DOI: https://doi.org/10.1080/02564602.2022.2121772
Hughes, D. P., & Salathe, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. Retrieved from http://arxiv.org/abs/1511.08060
Javidan, S. M., Banakar, A., Vakilian, K. A., & Ampatzidis, Y. (2023). Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agricultural Technology, 3(June 2022), 100081. https://doi.org/10.1016/j.atech.2022.100081 DOI: https://doi.org/10.1016/j.atech.2022.100081
Khan, M. A., Lali, M. I. U., Sharif, M., Javed, K., Aurangzeb, K., Haider, S. I., … Akram, T. (2020). Correction to “An Optimized Method for Segmentation and Classification of Apple Diseases Based on Strong Correlation and Genetic Algorithm Based Feature Selection.” IEEE Access, 8, 36514–36514.https://doi.org/10.1109/ACCESS.2020.2974161 DOI: https://doi.org/10.1109/ACCESS.2020.2974161
Kodors, S., Lacis, G., Sokolova, O., Zhukovs, V., & Apeinans, I. (2021). Apple scab detection using CNN and Transfer Learning. Agronomy Research, 19. https://doi.org/https://doi.org/10.15159/ar.21.045
Kumar Sahu, S., & Pandey, M. (2023). An optimal hybrid multiclass SVM for plant leaf disease detection using spatial Fuzzy C-Means model. Expert Systems with Applications, 214, 118989. https://doi.org/10.1016/j.eswa.2022.118989 DOI: https://doi.org/10.1016/j.eswa.2022.118989
Kusumo, B. S., Heryana, A., Mahendra, O., & Pardede, H. F. (2019). Machine Learning-based for Automatic Detection of Corn-Plant Diseases Using Image Processing. 2018 International Conference on Computer, Control, Informatics and Its Applications: Recent Challenges in Machine Learning for Computing Applications, IC3INA 2018 - Proceeding, 93–97. https://doi.org/10.1109/IC3INA.2018.8629507 DOI: https://doi.org/10.1109/IC3INA.2018.8629507
Liu, Q., Zuo, S., Peng, S., Zhang, H., Peng, Y., Li, W., … Kang, H. (2024). Development of Machine Learning Methods for Accurate Prediction of Plant Disease Resistance. Engineering. https://doi.org/10.1016/j.eng.2024.03.014 DOI: https://doi.org/10.1016/j.eng.2024.03.014
Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science, 7(September), 1–10. https://doi.org/10.3389/fpls.2016.01419 DOI: https://doi.org/10.3389/fpls.2016.01419
Morchid, A., Marhoun, M., El Alami, R., & Boukili, B. (2024). Intelligent detection for sustainable agriculture: A review of IoT-based embedded systems, cloud platforms, DL, and ML for plant disease detection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18392-9 DOI: https://doi.org/10.1007/s11042-024-18392-9
Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2019). Automated leaf disease detection in di ff erent crop species through image features analysis and One Class Classi fi ers. Computers and Electronics in Agriculture, 156(July 2018), 96–104. https://doi.org/10.1016/j.compag.2018.11.005 DOI: https://doi.org/10.1016/j.compag.2018.11.005
Pradhan, P., Kumar, B., & Mohan, S. (2022). Comparison of various deep convolutional neural network models to discriminate apple leaf diseases using transfer learning. Journal of Plant Diseases and Protection, 129(6), 1461–1473. https://doi.org/10.1007/s41348-022-00660-1 DOI: https://doi.org/10.1007/s41348-022-00660-1
Rehman, Z. ur, Khan, M. A., Ahmed, F., Damaševičius, R., Naqvi, S. R., Nisar, W., & Javed, K. (2021). Recognizing apple leaf diseases using a novel parallel real‐time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture. IET Image Processing, 15(10), 2157–2168. https://doi.org/10.1049/ipr2.12183 DOI: https://doi.org/10.1049/ipr2.12183
S.K., P. K., Sumithra, M. G., & Saranya, N. (2021). Particle Swarm Optimization (PSO) with fuzzy c means (PSO‐FCM)–based segmentation and machine learning classifier for leaf diseases prediction. Concurrency and Computation: Practice and Experience, 33(3), 1–13. https://doi.org/10.1002/cpe.5312 DOI: https://doi.org/10.1002/cpe.5312
Sharif, M., Attique, M., Iqbal, Z., Faisal, M., Ullah, M. I., & Younus, M. (2018). Detection and classi fi cation of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and Electronics in Agriculture, 150(May 2017), 220–234. https://doi.org/10.1016/j.compag.2018.04.023 DOI: https://doi.org/10.1016/j.compag.2018.04.023
Shrivastava, V. K., & Pradhan, M. K. (2021). Rice plant disease classification using color features: a machine learning paradigm. Journal of Plant Pathology, 103(1), 17–26. https://doi.org/10.1007/s42161-020-00683-3 DOI: https://doi.org/10.1007/s42161-020-00683-3
Singh, K., Kumar, S., & Kaur, P. (2019). Automatic detection of rust disease of Lentil by machine learning system using microscopic images. International Journal of Electrical and Computer Engineering, 9(1), 660–666. https://doi.org/10.11591/ijece.v9i1.pp.660-666 DOI: https://doi.org/10.11591/ijece.v9i1.pp660-666
Singla, R. S., Gupta, A., Gupta, R., Tripathi, V., Naruka, M. S., & Awasthi, S. (2023). Plant Disease Classification Using Machine Learning. 2023 International Conference on Disruptive Technologies (ICDT), 409–413. https://doi.org/10.1109/ICDT57929.2023.10151118 DOI: https://doi.org/10.1109/ICDT57929.2023.10151118
Srinivas, L. N. B., Bharathy, A. M. V., Ramakuri, S. K., Sethy, A., & Kumar, R. (2024). An optimized machine learning framework for crop disease detection. Multimedia Tools and Applications, 83(1), 1539–1558. https://doi.org/10.1007/s11042-023-15446-2 DOI: https://doi.org/10.1007/s11042-023-15446-2
Tahir, M. Bin, Khan, M. A., Javed, K., Kadry, S., Zhang, Y.-D., Akram, T., & Nazir, M. (2021). Recognition of Apple Leaf Diseases using Deep Learning and Variances-Controlled Features Reduction. Microprocessors and Microsystems, 104027. https://doi.org/10.1016/j.micpro.2021.104027 DOI: https://doi.org/10.1016/j.micpro.2021.104027
Thiagarajan, J. D., Kulkarni, S. V., Jadhav, S. A., Waghe, A. A., Raja, S. P., Rajagopal, S., … Subramaniam, S. (2024). Analysis of banana plant health using machine learning techniques. Scientific Reports, 14(1), 15041. https://doi.org/10.1038/s41598-024-63930-y DOI: https://doi.org/10.1038/s41598-024-63930-y
Umamageswari, A., Bharathiraja, N., & Irene, D. S. (2023). A Novel Fuzzy C-Means based Chameleon Swarm Algorithm for Segmentation and Progressive Neural Architecture Search for Plant Disease Classification. ICT Express, 9(2), 160–167. https://doi.org/10.1016/j.icte.2021.08.019 DOI: https://doi.org/10.1016/j.icte.2021.08.019
Vij, P., & Chopra, T. (2024). Classification System for Plant Leaf Diseases Using a Hybrid Machine Learning Model. Nanotechnology Perceptions, 20(S4), 193–204. https://doi.org/10.62441/nano-ntp.v20iS4.17 DOI: https://doi.org/10.62441/nano-ntp.v20iS4.17
Vishnoi, V. K., Kumar, K., & Kumar, B. (2021a). Crop Disease Classification Through Image Processing and Machine Learning Techniques Using Leaf Images. Proceedings of the 1st International Conference on Advances in Computing and Future Communication Technologies, ICACFCT 2021, (December),27–32.https://doi.org/10.1109/ICACFCT5397 8.2021.9837353 DOI: https://doi.org/10.1109/ICACFCT53978.2021.9837353
Vishnoi, V. K., Kumar, K., & Kumar, B. (2021b). Plant disease detection using computational intelligence and image processing. Journal of Plant Diseases and Protection, 128(1), 19–53. https://doi.org/10.1007/s41348-020-00368-0 DOI: https://doi.org/10.1007/s41348-020-00368-0
Vishnoi, V. K., Kumar, K., & Kumar, B. (2022). A comprehensive study of feature extraction techniques for plant leaf disease detection. Multimedia Tools and Applications, 81(1), 367–419. https://doi.org/10.1007/s11042-021-11375-0 DOI: https://doi.org/10.1007/s11042-021-11375-0
Vishnoi, V. K., Kumar, K., Kumar, B., Mohan, S., & Khan, A. A. (2023). Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network. IEEE Access, 11(November 2022), 6594–6609. https://doi.org/10.1109/ACCESS.2022.3232917 DOI: https://doi.org/10.1109/ACCESS.2022.3232917
Xian, T. S., & Ngadiran, R. (2021). Plant Diseases Classification using Machine Learning. Journal of Physics: Conference Series, 1962(1), 012024. https://doi.org/10.1088/1742-6596/1962/1/012024 DOI: https://doi.org/10.1088/1742-6596/1962/1/012024