Main Article Content
Abstract
Abiotic stress refers to the diverse range of environmental challenges that plants encounter. Environmental stressors such as salt, temperature, nutritional deprivation, and heavy metal toxicity can lead to problems in the functioning of seedling adaption systems. Furthermore, they can hinder the formation of plumules and radicles in seedlings, as well as their subsequent development and growth, both of which can lead to reduced crop production. Soil salinity poses a significant challenge to global food supply since salt stress dominates as a primary determinant constraining agricultural productivity. By the year 2050, it is projected that drought stress will result in a 50% reduction in global productivity. Multiple methodologies, including biotechnological approaches, conventional breeding methods, conservative breeding, agronomical approaches, and priming techniques, have shown effectiveness in reducing the negative impacts of abiotic stress and adapting to its severe conditions. The use of seed priming treatments regulates the production of antioxidants and promotes the accumulation of osmolytes to mitigate the negative consequences of various abiotic stress responses. When subjected to abiotic stress, crop plants cultivated from primed seeds respond rapidly at the cellular level. The major emphasis of this review is on the impact of abiotic stress on plant physiology and productivity, strategies for its management, and possible solutions. Furthermore, it explores several methods of priming, namely bio priming with PGPR, a biological technique that entails the introduction of bacteria.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Ali, B., Ali, A., Tahir, M. & Ali, S. (2014). Growth, Seed yield and quality of mungbean as influenced by foliar application of iron sulfate. Pakistan Journal of Life and Social Sciences, 12(1), 20-25.
- Borbély, P., Poór, P. & Tari, I. (2020). Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling. Plant Physiology and Biochemistry, 156, 345-356. DOI: https://doi.org/10.1016/j.plaphy.2020.09.019
- Bose, B., Kumar, M., Singhal, R.K. & Mondal, S. (2018). Impact of seed priming on the modulation of physico-chemical and molecular processes during germination, growth, and development of crops (Eds. 1). Advances in Seed Priming, Sprinfer, Singapore, 23-40. DOI: 10.1007/978-981-13-0032-5_2 DOI: https://doi.org/10.1007/978-981-13-0032-5_2
- Bukhat, S., Manzoor, H., Athar, H.U.R., Zafar, Z.U., Azeem, F. & Rasul, S. (2020). Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. Journal of Plant Growth Regulation, 39, 809-822. DOI: https://doi.org/10.1007/s00344-019-10024-z
- Chakraborty, S., Bera, K., Sadhukan, S. & Dutta, P. (2022). Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress, 3, 100052. https://doi.org/10.1016/j.stress.2021.100052. DOI: https://doi.org/10.1016/j.stress.2021.100052
- Ding, P. & Ding, Y. (2020). Stories of salicylic acid: a plant defense hormone. Trends in Plant Science, 25(6), 549-565. DOI: https://doi.org/10.1016/j.tplants.2020.01.004
- Fatma, M., Iqbal, N., Gautam, H., Sehar, Z., Sofo, A., D’Ippolito, I. & Khan, N.A. (2021). Ethylene and sulfur coordinately modulate the antioxidant system and ABA accumulation in mustard plants under salt stress. Plants, 10(1),180. DOI: https://doi.org/10.3390/plants10010180
- Garg, B.K. & Gupta, I.C. (1997). Saline wastelands environment and plant growth. Scientific Publishers. India.
- Großkinsky, D.K. & Petrášek, J. (2019). Auxins and cytokinins – the dynamic duo of growth-regulating phytohormones heading for new shores. New Phytologist, 221 (3), 1187-1190. https://doi.org/10.1111/nph.15556 DOI: https://doi.org/10.1111/nph.15556
- Gull, A., Ahmad Lone, A. & Ul Islam Wani, N. (2019). Biotic and Abiotic Stresses in Plants. Abiotic and Biotic Stress in Plants. IntechOpen. DOI: 10.5772/intechopen.85832. DOI: https://doi.org/10.5772/intechopen.85832
- Guzman, G.M., Cellini, F., Fotopoulos, V., Balestrini, R. & Arbona, V. (2022). New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia Plantarum, 174(1), 13547. doi.org/10.1111/ppl.13547 DOI: https://doi.org/10.1111/ppl.13547
- Halmer, P. (2000). Commercial seed treatment technology. Seed Technology and Its Biological Basis. Sheffield Academic Press, Sheffield, England, pp.257-286.
- Harman, G.E. (2011). Trichoderma—not just for biocontrol anymore. Phytoparasitica, 39(2), 103-108. DOI: https://doi.org/10.1007/s12600-011-0151-y
- He, M., He, C.Q. & Ding, N.Z. (2018). Abiotic Stresses: General defences of land plants and chances for engineering multistress tolerance. Frontiers in Plant Sciences, 9, 1771. Doi:10.3389/fpls.2018.01771. DOI: https://doi.org/10.3389/fpls.2018.01771
- Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. DOI: https://doi.org/10.1016/j.jplph.2015.12.011
- Jisha, K.C. & Puthur, J.T. (2014). Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiology and Molecular Biology of Plants, 20(3), 303-12. doi: 10.1007/s12298-014-0234-6. DOI: https://doi.org/10.1007/s12298-014-0234-6
- Jisha, K.C., Vijayakumari, K. & Puthur, J.T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 35,1381-1396. doi.org/10.1007/s11738-012-1186-5 DOI: https://doi.org/10.1007/s11738-012-1186-5
- Johnson, R. & Puthur, J.T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247-257. DOI: https://doi.org/10.1016/j.plaphy.2021.02.034
- Kaya, C., Ashraf, M., Alyemeni, M.N. & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147, 10-20. DOI: https://doi.org/10.1016/j.plaphy.2019.11.040
- Kotula, L., Garcia Caparros, P., Zörb, C., Colmer, T.D. & Flowers, T.J. (2020). Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. Plant, Cell & Environment, 43(12), 2932-2956. DOI: https://doi.org/10.1111/pce.13865
- Liang, J.L., Liu, J., Jia, P., Yang, T.T., Zeng, Q.W., Zhang, S.C., Liao, B., Shu, W.S. & Li, J.T. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. DOI: https://doi.org/10.1038/s41396-020-0632-4
- Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S.M., Meng, W. & Yu, J. (2021). Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy, 11, 2194. https://doi.org/10.3390/agronomy11112194 DOI: https://doi.org/10.3390/agronomy11112194
- Liu, X., Quan, W. & Bartels, D. (2022). Stress memory responses and seed priming correlate with drought tolerance in plants: An overview. Planta, 255(2), 45. DOI: https://doi.org/10.1007/s00425-022-03828-z
- Maxton, A., Singh, P. & Masih, S.A. (2017c). ACC deaminase producing bacteria mediated drought & salt tolerance in Capsicum annum. Journal of Plant Nutrition, 41,574-583. DOI: https://doi.org/10.1080/01904167.2017.1392574
- Maxton, A., Singh, P., Aruna, A., Prasad, S.M. & Masih, S.A. (2018b). PGPR: A Boon in Stress Tolerance. Research Journal of Biotechnology, 13(2), 105-11.
- Maxton, A., Singh, P., Aruna, A., Prasad, S.M. & Masih, S.A.(2017b) Characterization of ACC deaminase producing B.cepacia, C.freundii & S. marcescens for plant growth promoting activity. International Journal of Current Microbiology & Applied Sciences, 6(8), 883-897. DOI: https://doi.org/10.20546/ijcmas.2017.608.111
- Maxton, A., Singh, P., Prasad, S.M., Aruna, A. & Masih, S.A. (2017a). In-vitro Screening of B. cepacia, C. freundii & S. marcescens for Antagonistic efficacy. Journal of Pure and Applied Microbiology, 11(3): 1523-1534 DOI: https://doi.org/10.22207/JPAM.11.3.37
- Maxton, A., Singh, P., Singh, R.S. Singh, A.W. & Masih, S.A. (2018a). Evidence of B. cepacia, C. freundii & S. marcescens as potential agents inducing increased plant growth & heavy metal (Cd, Cr, Pb) metals. Asian Journal of Microbiology Biotechnology and Environmental Sciences, 20(1), 280-287.
- McDonald, M.B. (2000). Seed priming. Seed Technology and its Biological Basis, (Black and J. D. Bewley, Eds.), pp. 287-325. SheffieldAcademic Press, Sheffield, UK.
- Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Reviews in Plant Biology, 59, 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D. & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281–1293. doi.org/10.1007/s00299-015-1784-y. DOI: https://doi.org/10.1007/s00299-015-1784-y
- Purwestri, Y.A., Nurbaiti, S., Putri, S.P.M., Wahyuni, I.M., Yulyani, S.R., Sebastian, A., Nuringtyas, T.R. & Yamaguchi, N. (2023). Seed Halopriming: A Promising Strategy to Induce Salt Tolerance in Indonesian Pigmented Rice. Plants (Basel), 12(15), 2879. doi: 10.3390/plants12152879. DOI: https://doi.org/10.3390/plants12152879
- Sikder, R.K., Wang, X., Zhang, H., Gui, H., Dong, Q., Jin, D. & Song, M. (2020). Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in Gossypium hirsutum. Plants, 9, 450. https://doi.org/10.3390/plants9040450 DOI: https://doi.org/10.3390/plants9040450
- Savvides, A., Ali, S., Tester, M. & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21(4), 329-340. DOI: https://doi.org/10.1016/j.tplants.2015.11.003
- Shahbaz, M., Mushtaq, Z., Andaz, F. & Masood, A. (2013). Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)?. Scientia Horticulturae, 164, 507-511. DOI: https://doi.org/10.1016/j.scienta.2013.10.001
- Taylor, A.G. & Harman, G.E. (1990). Concepts and technologies of selected seed treatments. Annual Review of Phytopathology, 28(1), 321-339. DOI: https://doi.org/10.1146/annurev.py.28.090190.001541
- Wahid, A., Noreen, A., Basra, S.M., Gelani, S. & Farooq, M. (2008). Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Botanical Studies, 49, 343-350.
- Wang, R., Li, C., Zeng, L., Liu, L., Xi, J. & Li, J. (2024). Polyethylene Glycol Priming Enhances the Seed Germination and Seedling Growth of Scutellaria baicalensis Georgi under Salt Stress. Plants, 13, 565. https://doi.org/10.3390/plants13050565 DOI: https://doi.org/10.3390/plants13050565
- Wani, A.S., Ahmad, A., Hayat, S. and Tahir, I. (2019). Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant physiology and Biochemistry, 135, 385-394. DOI: https://doi.org/10.1016/j.plaphy.2019.01.002
- Went, F.W. & Thimann, K.V. (1937). Phytohormones. The Macmillan Company, New York.
- Wolny, E., Betekhtin, A., Rojek-Jelonek, A., Braszewska-Zalewska, A., Lusinska, J. & Hasterok, R. (2018). Germination and the Early Stages of Seedling Development in Brachypodium distachyon. International Journal of Molecular Sciences, 19, 2916. DOI: 10.3390/ijms19102916 DOI: https://doi.org/10.3390/ijms19102916
- Zheng, B.X., Ding, K., Yang, X.R., Wadaan, M.A.M., Hozzein, W.N., Penuelas, J. & Zhu, Y.G. (2018). Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of Total Environment, 647, 1113-1120. doi: 10.1016/j.scitotenv.2018.07.454. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.454
References
Ali, B., Ali, A., Tahir, M. & Ali, S. (2014). Growth, Seed yield and quality of mungbean as influenced by foliar application of iron sulfate. Pakistan Journal of Life and Social Sciences, 12(1), 20-25.
Borbély, P., Poór, P. & Tari, I. (2020). Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling. Plant Physiology and Biochemistry, 156, 345-356. DOI: https://doi.org/10.1016/j.plaphy.2020.09.019
Bose, B., Kumar, M., Singhal, R.K. & Mondal, S. (2018). Impact of seed priming on the modulation of physico-chemical and molecular processes during germination, growth, and development of crops (Eds. 1). Advances in Seed Priming, Sprinfer, Singapore, 23-40. DOI: 10.1007/978-981-13-0032-5_2 DOI: https://doi.org/10.1007/978-981-13-0032-5_2
Bukhat, S., Manzoor, H., Athar, H.U.R., Zafar, Z.U., Azeem, F. & Rasul, S. (2020). Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. Journal of Plant Growth Regulation, 39, 809-822. DOI: https://doi.org/10.1007/s00344-019-10024-z
Chakraborty, S., Bera, K., Sadhukan, S. & Dutta, P. (2022). Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress, 3, 100052. https://doi.org/10.1016/j.stress.2021.100052. DOI: https://doi.org/10.1016/j.stress.2021.100052
Ding, P. & Ding, Y. (2020). Stories of salicylic acid: a plant defense hormone. Trends in Plant Science, 25(6), 549-565. DOI: https://doi.org/10.1016/j.tplants.2020.01.004
Fatma, M., Iqbal, N., Gautam, H., Sehar, Z., Sofo, A., D’Ippolito, I. & Khan, N.A. (2021). Ethylene and sulfur coordinately modulate the antioxidant system and ABA accumulation in mustard plants under salt stress. Plants, 10(1),180. DOI: https://doi.org/10.3390/plants10010180
Garg, B.K. & Gupta, I.C. (1997). Saline wastelands environment and plant growth. Scientific Publishers. India.
Großkinsky, D.K. & Petrášek, J. (2019). Auxins and cytokinins – the dynamic duo of growth-regulating phytohormones heading for new shores. New Phytologist, 221 (3), 1187-1190. https://doi.org/10.1111/nph.15556 DOI: https://doi.org/10.1111/nph.15556
Gull, A., Ahmad Lone, A. & Ul Islam Wani, N. (2019). Biotic and Abiotic Stresses in Plants. Abiotic and Biotic Stress in Plants. IntechOpen. DOI: 10.5772/intechopen.85832. DOI: https://doi.org/10.5772/intechopen.85832
Guzman, G.M., Cellini, F., Fotopoulos, V., Balestrini, R. & Arbona, V. (2022). New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia Plantarum, 174(1), 13547. doi.org/10.1111/ppl.13547 DOI: https://doi.org/10.1111/ppl.13547
Halmer, P. (2000). Commercial seed treatment technology. Seed Technology and Its Biological Basis. Sheffield Academic Press, Sheffield, England, pp.257-286.
Harman, G.E. (2011). Trichoderma—not just for biocontrol anymore. Phytoparasitica, 39(2), 103-108. DOI: https://doi.org/10.1007/s12600-011-0151-y
He, M., He, C.Q. & Ding, N.Z. (2018). Abiotic Stresses: General defences of land plants and chances for engineering multistress tolerance. Frontiers in Plant Sciences, 9, 1771. Doi:10.3389/fpls.2018.01771. DOI: https://doi.org/10.3389/fpls.2018.01771
Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. DOI: https://doi.org/10.1016/j.jplph.2015.12.011
Jisha, K.C. & Puthur, J.T. (2014). Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiology and Molecular Biology of Plants, 20(3), 303-12. doi: 10.1007/s12298-014-0234-6. DOI: https://doi.org/10.1007/s12298-014-0234-6
Jisha, K.C., Vijayakumari, K. & Puthur, J.T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 35,1381-1396. doi.org/10.1007/s11738-012-1186-5 DOI: https://doi.org/10.1007/s11738-012-1186-5
Johnson, R. & Puthur, J.T. (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247-257. DOI: https://doi.org/10.1016/j.plaphy.2021.02.034
Kaya, C., Ashraf, M., Alyemeni, M.N. & Ahmad, P. (2020). The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiology and Biochemistry, 147, 10-20. DOI: https://doi.org/10.1016/j.plaphy.2019.11.040
Kotula, L., Garcia Caparros, P., Zörb, C., Colmer, T.D. & Flowers, T.J. (2020). Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. Plant, Cell & Environment, 43(12), 2932-2956. DOI: https://doi.org/10.1111/pce.13865
Liang, J.L., Liu, J., Jia, P., Yang, T.T., Zeng, Q.W., Zhang, S.C., Liao, B., Shu, W.S. & Li, J.T. (2020). Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal, 14(6), 1600-1613. DOI: https://doi.org/10.1038/s41396-020-0632-4
Lei, C., Bagavathiannan, M., Wang, H., Sharpe, S.M., Meng, W. & Yu, J. (2021). Osmopriming with Polyethylene Glycol (PEG) for Abiotic Stress Tolerance in Germinating Crop Seeds: A Review. Agronomy, 11, 2194. https://doi.org/10.3390/agronomy11112194 DOI: https://doi.org/10.3390/agronomy11112194
Liu, X., Quan, W. & Bartels, D. (2022). Stress memory responses and seed priming correlate with drought tolerance in plants: An overview. Planta, 255(2), 45. DOI: https://doi.org/10.1007/s00425-022-03828-z
Maxton, A., Singh, P. & Masih, S.A. (2017c). ACC deaminase producing bacteria mediated drought & salt tolerance in Capsicum annum. Journal of Plant Nutrition, 41,574-583. DOI: https://doi.org/10.1080/01904167.2017.1392574
Maxton, A., Singh, P., Aruna, A., Prasad, S.M. & Masih, S.A. (2018b). PGPR: A Boon in Stress Tolerance. Research Journal of Biotechnology, 13(2), 105-11.
Maxton, A., Singh, P., Aruna, A., Prasad, S.M. & Masih, S.A.(2017b) Characterization of ACC deaminase producing B.cepacia, C.freundii & S. marcescens for plant growth promoting activity. International Journal of Current Microbiology & Applied Sciences, 6(8), 883-897. DOI: https://doi.org/10.20546/ijcmas.2017.608.111
Maxton, A., Singh, P., Prasad, S.M., Aruna, A. & Masih, S.A. (2017a). In-vitro Screening of B. cepacia, C. freundii & S. marcescens for Antagonistic efficacy. Journal of Pure and Applied Microbiology, 11(3): 1523-1534 DOI: https://doi.org/10.22207/JPAM.11.3.37
Maxton, A., Singh, P., Singh, R.S. Singh, A.W. & Masih, S.A. (2018a). Evidence of B. cepacia, C. freundii & S. marcescens as potential agents inducing increased plant growth & heavy metal (Cd, Cr, Pb) metals. Asian Journal of Microbiology Biotechnology and Environmental Sciences, 20(1), 280-287.
McDonald, M.B. (2000). Seed priming. Seed Technology and its Biological Basis, (Black and J. D. Bewley, Eds.), pp. 287-325. SheffieldAcademic Press, Sheffield, UK.
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annual Reviews in Plant Biology, 59, 651-681. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D. & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281–1293. doi.org/10.1007/s00299-015-1784-y. DOI: https://doi.org/10.1007/s00299-015-1784-y
Purwestri, Y.A., Nurbaiti, S., Putri, S.P.M., Wahyuni, I.M., Yulyani, S.R., Sebastian, A., Nuringtyas, T.R. & Yamaguchi, N. (2023). Seed Halopriming: A Promising Strategy to Induce Salt Tolerance in Indonesian Pigmented Rice. Plants (Basel), 12(15), 2879. doi: 10.3390/plants12152879. DOI: https://doi.org/10.3390/plants12152879
Sikder, R.K., Wang, X., Zhang, H., Gui, H., Dong, Q., Jin, D. & Song, M. (2020). Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in Gossypium hirsutum. Plants, 9, 450. https://doi.org/10.3390/plants9040450 DOI: https://doi.org/10.3390/plants9040450
Savvides, A., Ali, S., Tester, M. & Fotopoulos, V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science, 21(4), 329-340. DOI: https://doi.org/10.1016/j.tplants.2015.11.003
Shahbaz, M., Mushtaq, Z., Andaz, F. & Masood, A. (2013). Does proline application ameliorate adverse effects of salt stress on growth, ions and photosynthetic ability of eggplant (Solanum melongena L.)?. Scientia Horticulturae, 164, 507-511. DOI: https://doi.org/10.1016/j.scienta.2013.10.001
Taylor, A.G. & Harman, G.E. (1990). Concepts and technologies of selected seed treatments. Annual Review of Phytopathology, 28(1), 321-339. DOI: https://doi.org/10.1146/annurev.py.28.090190.001541
Wahid, A., Noreen, A., Basra, S.M., Gelani, S. & Farooq, M. (2008). Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Botanical Studies, 49, 343-350.
Wang, R., Li, C., Zeng, L., Liu, L., Xi, J. & Li, J. (2024). Polyethylene Glycol Priming Enhances the Seed Germination and Seedling Growth of Scutellaria baicalensis Georgi under Salt Stress. Plants, 13, 565. https://doi.org/10.3390/plants13050565 DOI: https://doi.org/10.3390/plants13050565
Wani, A.S., Ahmad, A., Hayat, S. and Tahir, I. (2019). Epibrassinolide and proline alleviate the photosynthetic and yield inhibition under salt stress by acting on antioxidant system in mustard. Plant physiology and Biochemistry, 135, 385-394. DOI: https://doi.org/10.1016/j.plaphy.2019.01.002
Went, F.W. & Thimann, K.V. (1937). Phytohormones. The Macmillan Company, New York.
Wolny, E., Betekhtin, A., Rojek-Jelonek, A., Braszewska-Zalewska, A., Lusinska, J. & Hasterok, R. (2018). Germination and the Early Stages of Seedling Development in Brachypodium distachyon. International Journal of Molecular Sciences, 19, 2916. DOI: 10.3390/ijms19102916 DOI: https://doi.org/10.3390/ijms19102916
Zheng, B.X., Ding, K., Yang, X.R., Wadaan, M.A.M., Hozzein, W.N., Penuelas, J. & Zhu, Y.G. (2018). Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of Total Environment, 647, 1113-1120. doi: 10.1016/j.scitotenv.2018.07.454. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.454