Main Article Content

Abstract

The emergence of non-albicans Candida as a potential causative agent of candidiasis following Candida albicans is occurring globally. It is known that phenolic cresols, thymol, and carvacrol have anti-Candida characteristics. However, there are few papers that disclose the mechanism of action, which is characterized by a damaged cell wall and ergosterol synthesis, as well as calcium-induced death in C. albicans. This work utilized in-silico docking analysis to examine the molecular targets of thymol and carvacrol in Candida glabrata. The results were then validated in vitro by antifungal susceptibility testing and growth curve analysis. The study incorporated C. glabrata deletion mutants for the target proteins to gain understanding of the function of these proteins in the antifungal effects of the two monoterpenoids. After conducting molecular docking and in silico toxicity evaluations, thymol and carvacrol were chosen for in vitro investigations. Experimental tests conducted in a laboratory setting have shown that both phytocompounds exhibit strong binding affinity towards cell wall synthesis proteins (Kre1p, Kre2p, Ecm33p), calcium channel proteins (Mid1p, Ecm7p), and proteins involved in the ergosterol synthesis pathway (Erg5p). These proteins are likely to be the specific targets for the anti-Candida properties of the two isomeric monoterpenoids in C. glabrata. Minimum inhibitory concentration (MIC50) values for thymol and carvacrol range from 50 µg/ml to 75 µg/ml. The wild-type strains exhibit a minimum fungicidal concentration of 100 µg/ml for thymol and 125 µg/ml for carvacrol. The results underscore the significance of these proteins in the fungal reaction to thymol and carvacrol and also indicate a promising opportunity for the development of novel antifungal treatment methods utilizing these proteins.

Keywords

Candida glabrata Candidiasis Carvacrol Molecular targets Multidrug resistance Phytocompound Protein Thymol

Article Details

How to Cite
Kumar, D., Ansari, A., Rai, N., & Kumar, N. (2024). Unravelling novel molecular targets of Thymol and Carvacrol in Candida glabrata. Environment Conservation Journal, 25(3), 795–807. https://doi.org/10.36953/ECJ.27792845

References

  1. Abdel-Hamid, R. M., El-Mahallawy, H. A., Abdelfattah, N. E., & Wassef, M. A. (2023). The impact of increasing non-albicans Candida trends on diagnostics in immunocompromised patients. Brazilian Journal of Microbiology, 54(4), 2879–2892. https://doi.org/10.1007/s42770-023-01163-3 DOI: https://doi.org/10.1007/s42770-023-01163-3
  2. Ahmad, A., Khan, A., Akhtar, F., Yousuf, S., Xess, I., Khan, L. A., & Manzoor, N. (2011). Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. European Journal of Clinical Microbiology and Infectious Diseases, 30(1), 41–50. https://doi.org/10.1007/s10096-010-1050-8 DOI: https://doi.org/10.1007/s10096-010-1050-8
  3. Antinori, S., Milazzo, L., Sollima, S., Galli, M., & Corbellino, M. (2016). Candidemia and invasive candidiasis in adults: A narrative review. European Journal of Internal Medicine, 34, 21–28. https://doi.org/10.1016/j.ejim.2016.06.029 DOI: https://doi.org/10.1016/j.ejim.2016.06.029
  4. Arendrup, M. C., & Patterson, T. F. (2017). Multidrug-resistant candida: Epidemiology, molecular mechanisms, and treatment. Journal of Infectious Diseases, 216(Suppl 3), S445–S451. https://doi.org/10.1093/infdis/jix131 DOI: https://doi.org/10.1093/infdis/jix131
  5. Bongomin, F., Ekeng, B. E., Kibone, W., Nsenga, L., Olum, R., Itam-Eyo, A., … Baluku, J. B. (2022). Invasive Fungal Diseases in Africa: A Critical Literature Review. Journal of Fungi, 8(12), 1–40. https://doi.org/10.3390/jof8121236 DOI: https://doi.org/10.3390/jof8121236
  6. Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and multi-national prevalence of fungal diseases—estimate precision. Journal of Fungi, 3(4). https://doi.org/10.3390/jof3040057 DOI: https://doi.org/10.3390/jof3040057
  7. Boone, C., Sdicu, A. M., Laroche, M., & Bussey, H. (1991). Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall β-glucan synthesis. Journal of Bacteriology, 173(21), 6859–6864. https://doi.org/10.1128/jb.173.21.6859-6864.1991 DOI: https://doi.org/10.1128/jb.173.21.6859-6864.1991
  8. Breinig, F., Schleinkofer, K., & Schmitt, M. J. (2004). Yeast Kre1p is GPI-anchored and involved in both cell wall assembly and architecture. Microbiology, 150(10), 3209–3218. https://doi.org/10.1099/mic.0.27175-0 DOI: https://doi.org/10.1099/mic.0.27175-0
  9. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717 DOI: https://doi.org/10.1038/srep42717
  10. Dar, O. A., Lone, S. A., Malik, M. A., Aqlan, F. M., Wani, M. Y., Hashmi, A. A., & Ahmad, A. (2019). Synthesis and synergistic studies of isatin based mixed ligand complexes as potential antifungal therapeutic agents. Heliyon, 5(7), e02055. https://doi.org/10.1016/j.heliyon.2019.e02055 DOI: https://doi.org/10.1016/j.heliyon.2019.e02055
  11. de Groot, P. W. J., Hellingwerf, K. J., & Klis, F. M. (2003). Genome-wide identification of fungal GPI proteins. Yeast, 20(9), 781–796. https://doi.org/10.1002/yea.1007 DOI: https://doi.org/10.1002/yea.1007
  12. Denning, D. W. (2022). Antifungal drug resistance: an update. European Journal of Hospital Pharmacy, 29(2), 109–112. https://doi.org/10.1136/ejhpharm-2020-002604 DOI: https://doi.org/10.1136/ejhpharm-2020-002604
  13. Devadas, S. M., Nayak, U. Y., Narayan, R., Hande, M. H., & Ballal, M. (2019). 2,5-Dimethyl-4-hydroxy-3(2H)-furanone as an Anti-biofilm Agent Against Non-Candida albicans Candida Species. Mycopathologia, 184(3), 403–411. https://doi.org/10.1007/s11046-019-00341-y DOI: https://doi.org/10.1007/s11046-019-00341-y
  14. Diseases, F. (2018). Invasive candidiasis. Nature Reviews Disease Primers, 4, 5–9. https://doi.org/10.1038/nrdp.2018.27 DOI: https://doi.org/10.1038/nrdp.2018.27
  15. Ewing, T. J. A., Makino, S., Skillman, A. G., & Kuntz, I. D. (2001). DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design, 15(5), 411–428. https://doi.org/10.1023/A:1011115820450 DOI: https://doi.org/10.1023/A:1011115820450
  16. Fahimirad, S., Abtahi, H., Razavi, S. H., Alizadeh, H., & Ghorbanpour, M. (2017). Production of recombinant antimicrobial polymeric protein beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol. Molecules, 22(6). https://doi.org/10.3390/molecules22060822 DOI: https://doi.org/10.3390/molecules22060822
  17. Feinstein, W. P., & Brylinski, M. (2015). Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Journal of Cheminformatics, 7(1). https://doi.org/10.1186/s13321-015-0067-5 DOI: https://doi.org/10.1186/s13321-015-0067-5
  18. Gow, N. A. R., Johnson, C., Berman, J., Coste, A. T., Cuomo, C. A., Perlin, D. S., … Edgar, K. (2022). The importance of antimicrobial resistance in medical mycology. Nature Communications, 13(1), 5352. https://doi.org/10.1038/s41467-022-32249-5 DOI: https://doi.org/10.1038/s41467-022-32249-5
  19. Gupta, P., Gupta, S., Sharma, M., Kumar, N., Pruthi, V., & Poluri, K. M. (2018). Effectiveness of Phytoactive Molecules on Transcriptional Expression, Biofilm Matrix, and Cell Wall Components of Candida glabrata and Its Clinical Isolates. ACS Omega, 3(9), 12201–12214. https://doi.org/10.1021/acsomega.8b01856 DOI: https://doi.org/10.1021/acsomega.8b01856
  20. Gupta, P., Rai, N., & Kumar, N. (2017). Molecular Drug Targets in Candida glabrata. 5(2), 112–130.
  21. Kajihara, T., Yahara, K., Nagi, M., Kitamura, N., Hirabayashi, A., Hosaka, Y., … Sugai, M. (2022). Distribution, trends, and antifungal susceptibility of Candida species causing candidemia in Japan, 2010-2019: A retrospective observational study based on national surveillance data. Medical Mycology, 60(9). https://doi.org/10.1093/mmy/myac071 DOI: https://doi.org/10.1093/mmy/myac071
  22. Kidd, S. E., Abdolrasouli, A., & Hagen, F. (2023). Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infectious Diseases, 10(1). https://doi.org/10.1093/ofid/ofac559 DOI: https://doi.org/10.1093/ofid/ofac559
  23. Ksiezopolska, E., Schikora-Tamarit, M. À., Beyer, R., Nunez-Rodriguez, J. C., Schüller, C., & Gabaldón, T. (2021). Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Current Biology, 31(23), 5314-5326.e10. https://doi.org/10.1016/j.cub.2021.09.084 DOI: https://doi.org/10.1016/j.cub.2021.09.084
  24. Kumar, D., Ayesha, Jha, M., Gautam, P., Joshi, H., & Kumar, N. (2020). A recent report on ‘plants with anti-candida properties.’ International Journal of Current Research and Review, 12(18), 25–34. https://doi.org/10.31782/IJCRR.2020.12186 DOI: https://doi.org/10.31782/IJCRR.2020.12186
  25. Lamb, D. C., Maspahy, S., Kelly, D. E., Manning, N. J., Geber, A., Bennett, J. E., & Kelly, S. L. (1999). Purification, reconstitution, and inhibition of cytochrome P-450 sterol Δ22-desaturase from the pathogenic fungus Candida glabrata. Antimicrobial Agents and Chemotherapy, 43(7), 1725–1728. https://doi.org/10.1128/aac.43.7.1725 DOI: https://doi.org/10.1128/AAC.43.7.1725
  26. Lotfali, E., Erami, M., Fattahi, M., Nemati, H., Ghasemi, Z., & Mahdavi, E. (2022). Analysis of molecular resistance to azole and echinocandin in Candida species in patients with vulvovaginal candidiasis. Current Medical Mycology, 8(2), 1–7. https://doi.org/10.18502/cmm.8.2.10326 DOI: https://doi.org/10.18502/cmm.8.2.10326
  27. Martel, C. M., Parker, J. E., Bader, O., Weig, M., Gross, U., Warrilow, A. G. S., … Kelly, S. L. (2010). A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14α-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrobial Agents and Chemotherapy, 54(9), 3578–3583. https://doi.org/10.1128/AAC.00303-10 DOI: https://doi.org/10.1128/AAC.00303-10
  28. Mhatre, S., Naik, S., & Patravale, V. (2021). A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine, 129(November 2020), 104137. https://doi.org/10.1016/j.compbiomed.2020.104137 DOI: https://doi.org/10.1016/j.compbiomed.2020.104137
  29. Munro, C. A., Bates, S., Buurman, E. T., Hughes, H. B., & Donna, M. (2013). Europe PMC Funders Group Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α -1, 2-Mannosyltransferases That Participate in O -Linked Mannosylation and Are Required for Adhesion and Virulence. J Biol Chem., 280(2), 1051–1060. https://doi.org/10.1074/jbc.M411413200.Mnt1p DOI: https://doi.org/10.1074/jbc.M411413200
  30. Nagoor Meeran, M. F., Javed, H., Taee, H. Al, Azimullah, S., & Ojha, S. K. (2017). Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Frontiers in Pharmacology, Vol. 8. Frontiers Media S.A. https://doi.org/10.3389/fphar.2017.00380 DOI: https://doi.org/10.3389/fphar.2017.00380
  31. Nasrollahi, Z., & Yadegari, M. H. (2016). Antifungal Activity of Caffeine in Combination with Fluconazole against Candida albicans. Infection, Epidemiology and Medicine, 2(2), 18–21. https://doi.org/10.18869/modares.iem.2.2.18 DOI: https://doi.org/10.18869/modares.iem.2.2.18
  32. Niu, X., Al-Hatmi, A. M. S., Vitale, R. G., Lackner, M., Ahmed, S. A., Verweij, P. E., … de Hoog, S. (2024). Evolutionary trends in antifungal resistance: a meta-analysis. Microbiology Spectrum, 12(4). https://doi.org/10.1128/spectrum.02127-23 DOI: https://doi.org/10.1128/spectrum.02127-23
  33. Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of Polypeptide Chain Configurations. Journal of Molecular Biology, 7(1), 95–99. https://doi.org/10.1016/S0022-2836(63)80023-6 DOI: https://doi.org/10.1016/S0022-2836(63)80023-6
  34. Schuler, J., Hudson, M. L., Schwartz, D., & Samudrala, R. (2017). A systematic review of computational drug discovery, development, and repurposing for ebola virus disease treatment. Molecules, 22(10). https://doi.org/10.3390/molecules22101777 DOI: https://doi.org/10.3390/molecules22101777
  35. Schwarzmüller, T., Ma, B., Hiller, E., Istel, F., Tscherner, M., Brunke, S., … Kuchler, K. (2014). Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes. PLoS Pathogens, 10(6). https://doi.org/10.1371/journal.ppat.1004211 DOI: https://doi.org/10.1371/journal.ppat.1004211
  36. Sezgin, F. M., Avcu, M., Sevim, E., & Babaoglu, U. T. (2019). In vitro activity of fosfomycin on biofilm in community-acquired Staphylococcus aureus isolates. Clinical and Experimental Health Sciences, (15). https://doi.org/10.33808/clinexphealthsci.599855 DOI: https://doi.org/10.33808/clinexphealthsci.599855
  37. Shariati, A., Didehdar, M., Razavi, S., Heidary, M., Soroush, F., & Chegini, Z. (2022, July 11). Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Frontiers in Pharmacology, Vol. 13. Frontiers Media S.A. https://doi.org/10.3389/fphar.2022.917787 DOI: https://doi.org/10.3389/fphar.2022.917787
  38. Sharma, M., & Chakrabarti, A. (2023, March 1). Candidiasis and Other Emerging Yeasts. Current Fungal Infection Reports, Vol. 17, pp. 15–24. Springer. https://doi.org/10.1007/s12281-023-00455-3 DOI: https://doi.org/10.1007/s12281-023-00455-3
  39. Song, X., Xia, Y.-X., He, Z.-D., & Zhang, H.-J. (2017). A Review of Natural Products with Anti-Biofilm Activity. Current Organic Chemistry, 22(8), 789–817. https://doi.org/10.2174/1385272821666170620110041 DOI: https://doi.org/10.2174/1385272821666170620110041
  40. Tangwattanachuleeporn, M. (2013). Characterization of the cell wall protein Ecm33 family in Candida glabrata. PhD Thesis. Retrieved from papers://ae875177-834e-4ba8-8523-120292c79891/Paper/p6119
  41. Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/jcc.21334 DOI: https://doi.org/10.1002/jcc.21334
  42. Vitiello, A., Ferrara, F., Boccellino, M., Ponzo, A., Cimmino, C., Comberiati, E., … Sabbatucci, M. (2023). Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines, 11(4), 1–13. https://doi.org/10.3390/biomedicines11041063 DOI: https://doi.org/10.3390/biomedicines11041063
  43. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 1–8. https://doi.org/10.1186/1471-2105-9-40 DOI: https://doi.org/10.1186/1471-2105-9-40