Main Article Content

Abstract

Widespread usage of antifungals has led to the development of antifungal resistance, causing a change in the epidemiology of the responsible agents from albicans to non-Candida albicans species. Pharmaceutical repurposing is an alternate strategy that has provided a cost-effective method to address the increasing resistance to antifungal medications. The objective of this work was to examine the antifungal properties of Alexidine dihydrochloride (AXD) and Hexachlorophene (HCP) against a non-Albicans Candida model, C. glabrata. The lowest inhibitory doses of AXD and HCP against C. glabrata were determined by in vitro methods to be 0.69-1.03 µM and 14.75-19.66 µM, respectively. The minimum doses of AXD and HCP that caused fungicidal effects were defined as 1.375 µM and 61.44 µM, respectively. Three proteins involved in crucial physiological pathways, namely cell wall production (Kre1p, Kre2p, Ecm33p), membrane calcium channel (Mid1p, Ecm7p), and ergosterol biosynthesis (Erg5p), were chosen as potential targets for the medications due to their functions in survival and disease development. SWISS MODEL was used to create the 3D structures of predicted targets of C. glabrata. The quality of these structures was assessed using Ramachandran plot statistics. AXD and HCP were analyzed by docking software AutoDock Vina against these targets. The findings of computational investigations have shown that both medicines exhibit interaction affinities with all the selected protein types. The binding energy profiles of AXD and HCP showed that Mid1p had the lowest binding energies at -10.1 kcal/mol and -9.2 kcal/mol, respectively. Kre2p had binding energies of -7.9 kcal/mol and -7.1 kcal/mol, respectively. Erg5p had binding energies of -6.6 kcal/mol and -6.2 kcal/mol, respectively. Ecm7p had binding energies of -6.6 kcal/mol and -6.1 kcal/mol, respectively. Recm7p had binding energies of -4.8 kcal/mol and -7.7 kcal/mol, respectively. These results suggest that these genes are likely targets of the two drugs in C. glabrata.

Keywords

Drug targets Drug repurposing Homology modelling In silico docking Non-albicans Candida

Article Details

How to Cite
Ansari, A., Kumar, D., Rai, N., & Kumar, N. (2024). In silico approach to identify the potential targets of Alexidine dihydrochloride and Hexachlorophene in human fungal pathogen C. glabrata. Environment Conservation Journal, 25(3), 836–845. https://doi.org/10.36953/ECJ.27762844

References

  1. Biofilm and Related antimicbial resistance (2021). Webology. https://doi.org/10.29121/web/v18i2/47 DOI: https://doi.org/10.29121/WEB/V18I2/47
  2. Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., & Dutta, S. (2019). RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474. DOI: https://doi.org/10.1093/nar/gky1004
  3. De Cremer, K., Lanckacker, E., Cools, T. L., Bax, M., De Brucker, K., Cos, P., Cammue, B. P. A., & Thevissen, K. (2015). Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrobial Agents and Chemotherapy, 59(1), 421–426. https://doi.org/10.1128/AAC.04229-14 DOI: https://doi.org/10.1128/AAC.04229-14
  4. De Oliveira, H. C., Monteiro, M. C., Rossi, S. A., Pemán, J., Ruiz-Gaitán, A., Mendes-Giannini, M. J. S., Mellado, E., & Zaragoza, O. (2019). Identification of Off-Patent Compounds That Present Antifungal Activity against the Emerging Fungal Pathogen Candida auris. Frontiers in Cellular and Infection Microbiology, 9(APR). https://doi.org/10.3389/fcimb.2019.00083 DOI: https://doi.org/10.3389/fcimb.2019.00083
  5. Eldesouky, H. E., Salama, E. A., Li, X., Hazbun, T. R., Mayhoub, A. S., & Seleem, M. N. (2020). Repurposing approach identifies pitavastatin as a potent azole chemosensitizing agent effective against azole-resistant Candida species. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-64571-7 DOI: https://doi.org/10.1038/s41598-020-64571-7
  6. Fahimirad, S., Abtahi, H., Razavi, S. H., Alizadeh, H., & Ghorbanpour, M. (2017). Production of recombinant antimicrobial polymeric protein beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol. Molecules, 22(6). https://doi.org/10.3390/molecules22060822 DOI: https://doi.org/10.3390/molecules22060822
  7. Guinea, J. (2014). Global trends in the distribution of Candida species causing candidemia. In Clinical Microbiology and Infection (Vol. 20, Issue 6, pp. 5–10). Elsevier B.V. https://doi.org/10.1111/1469-0691.12539 DOI: https://doi.org/10.1111/1469-0691.12539
  8. Gupta, P., Chanda, R., Rai, N., Kataria, V. K., & Kumar, N. (2016a). Antihypertensive, Amlodipine Besilate Inhibits Growth and Biofilm of Human Fungal Pathogen Candida. Assay and Drug Development Technologies, 14(5), 291–297. https://doi.org/10.1089/adt.2016.714
  9. Gupta, P., Chanda, R., Rai, N., Kataria, V. K., & Kumar, N. (2016b). Antihypertensive, Amlodipine Besilate Inhibits Growth and Biofilm of Human Fungal Pathogen Candida. Assay and Drug Development Technologies, 14(5), 291–297. https://doi.org/10.1089/adt.2016.714 DOI: https://doi.org/10.1089/adt.2016.714
  10. Gupta, P., & Poluri, K. M. (2022). Elucidating the Eradication Mechanism of Perillyl Alcohol against Candida glabrata Biofilms: Insights into the Synergistic Effect with Azole Drugs. ACS Bio and Med Chem Au, 2(1), 60–72. https://doi.org/10.1021/acsbiomedchemau.1c00034 DOI: https://doi.org/10.1021/acsbiomedchemau.1c00034
  11. Hasim, S., & Coleman, J. J. (2019). Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Medicinal Chemistry, 11(08), 869–883. DOI: https://doi.org/10.4155/fmc-2018-0465
  12. Hassan, Y., Chew, S. Y., & Than, L. T. L. (2021). Candida glabrata: Pathogenicity and resistance mechanisms for adaptation and survival. In Journal of Fungi (Vol. 7, Issue 8). MDPI AG. https://doi.org/10.3390/jof7080667 DOI: https://doi.org/10.3390/jof7080667
  13. Ivanov, M., Ćirić, A., & Stojković, D. (2022). Emerging antifungal targets and strategies. International Journal of Molecular Sciences, 23(5), 2756. DOI: https://doi.org/10.3390/ijms23052756
  14. Kaur, R., Castaño, I., & Cormack, B. P. (2004). Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrobial Agents and Chemotherapy, 48(5), 1600–1613. DOI: https://doi.org/10.1128/AAC.48.5.1600-1613.2004
  15. Kim, K., Zilbermintz, L., & Martchenko, M. (2015a). Repurposing FDA approved drugs against the human fungal pathogen, Candida albicans. Annals of Clinical Microbiology and Antimicrobials, 14(1). https://doi.org/10.1186/s12941-015-0090-4
  16. Kim, K., Zilbermintz, L., & Martchenko, M. (2015b). Repurposing FDA approved drugs against the human fungal pathogen, Candida albicans. Annals of Clinical Microbiology and Antimicrobials, 14(1). https://doi.org/10.1186/s12941-015-0090-4 DOI: https://doi.org/10.1186/s12941-015-0090-4
  17. Kocher, G. (n.d.). Online Journal of Bioinformatics. http://bioinf.cs.ucl.ac.uk/psipred/
  18. Kumar, P., & Arya, A. (n.d.). Ramachandran plot-A simplified approach. https://www.researchgate.net/publication/330158666
  19. Liu, S., Hou, Y., Liu, W., Lu, C., Wang, W., & Sun, S. (2015). Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryotic Cell, 14(4), 324–334. DOI: https://doi.org/10.1128/EC.00271-14
  20. Loh, J. T., & Lam, K. P. (2023). Fungal infections: Immune defense, immunotherapies and vaccines. In Advanced Drug Delivery Reviews (Vol. 196). Elsevier B.V. https://doi.org/10.1016/j.addr.2023.114775 DOI: https://doi.org/10.1016/j.addr.2023.114775
  21. Mamouei, Z., Alqarihi, A., Singh, S., Xu, S., Mansour, M. K., Ibrahim, A. S., & Uppuluri, P. (2018a). Alexidine dihydrochloride has broad-spectrum activities against diverse fungal pathogens. MSphere, 3(5). https://doi.org/10.1128/mSphere.00539-18
  22. Mamouei, Z., Alqarihi, A., Singh, S., Xu, S., Mansour, M. K., Ibrahim, A. S., & Uppuluri, P. (2018b). Alexidine Dihydrochloride Has Broad-Spectrum Activities against Diverse Fungal Pathogens. MSphere, 3(5). https://doi.org/10.1128/msphere.00539-18 DOI: https://doi.org/10.1128/mSphere.00539-18
  23. Martin, D. C., Kim, H., Mackin, N. A., Maldonado-Báez, L., Evangelista, C. C., Beaudry, V. G., Dudgeon, D. D., Naiman, D. Q., Erdman, S. E., & Cunningham, K. W. (2011). New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. Journal of Biological Chemistry, 286(12), 10744–10754. DOI: https://doi.org/10.1074/jbc.M110.177451
  24. Morris, G. M., Goodsell, D. S., Pique, M. E., Huey, R., Forli, S., Hart, W. E., Halliday, S., Belew, R., & Olson, A. J. (1991). User Guide AutoDock Version 4.2 Updated for version 4.2.6 Automated Docking of Flexible Ligands to Flexible Receptors. http://autodock.scripps.edu/
  25. Nabeela, S., Date, A., Ibrahim, A. S., & Uppuluri, P. (2022). Antifungal activity of alexidine dihydrochloride in a novel diabetic mouse model of dermatophytosis. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.958497 DOI: https://doi.org/10.3389/fcimb.2022.958497
  26. Nahar, D., Mohite, P., Lonkar, A., Chidrawar, V. R., Dodiya, R., Uddin, M. J., Singh, S., & Prajapati, B. G. (2024). An insight into new strategies and targets to combat antifungal resistance: A comprehensive review. In European Journal of Medicinal Chemistry Reports (Vol. 10). Elsevier Masson s.r.l. https://doi.org/10.1016/j.ejmcr.2023.100120 DOI: https://doi.org/10.1016/j.ejmcr.2023.100120
  27. O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 1–14. DOI: https://doi.org/10.1186/1758-2946-3-33
  28. Oliveira, A. S., Martinez-de-Oliveira, J., Donders, G. G. G., Palmeira-de-Oliveira, R., & Palmeira-de-Oliveira, A. (2018). Anti-Candida activity of antidepressants sertraline and fluoxetine: effect upon pre-formed biofilms. Medical Microbiology and Immunology, 207(3–4), 195–200. https://doi.org/10.1007/s00430-018-0539-0 DOI: https://doi.org/10.1007/s00430-018-0539-0
  29. Pahwa, N., Kumar, R., Nirkhiwale, S., & Bandi, A. (2014). Species distribution and drug susceptibility of candida in clinical isolates from a tertiary care centre at Indore. Indian Journal of Medical Microbiology, 32(1), 44–48. https://doi.org/10.4103/0255-0857.124300 DOI: https://doi.org/10.4103/0255-0857.124300
  30. Pereira, R., dos Santos Fontenelle, R. O., de Brito, E. H. S., & de Morais, S. M. (2021). Biofilm of Candida albicans: formation, regulation and resistance. In Journal of Applied Microbiology (Vol. 131, Issue 1, pp. 11–22). John Wiley and Sons Inc. https://doi.org/10.1111/jam.14949 DOI: https://doi.org/10.1111/jam.14949
  31. Priya, A., Selvaraj, A., Divya, D., Karthik Raja, R., & Pandian, S. K. (2021). In Vitro and In Vivo Anti-infective Potential of Thymol Against Early Childhood Caries Causing Dual Species Candida albicans and Streptococcus mutans. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.760768 DOI: https://doi.org/10.3389/fphar.2021.760768
  32. Ray, A., Aayilliath K, A., Banerjee, S., Chakrabarti, A., & Denning, D. W. (2022). Burden of Serious Fungal Infections in India. Open Forum Infectious Diseases, 9(12). https://doi.org/10.1093/ofid/ofac603 DOI: https://doi.org/10.1093/ofid/ofac603
  33. Siles, S. A., Srinivasan, A., Pierce, C. G., Lopez-Ribot, J. L., & Ramasubramanian, A. K. (2013). High-throughput screening of a collection of known pharmacologically active small compounds for identification of candida albicans biofilm inhibitors. Antimicrobial Agents and Chemotherapy, 57(8), 3681–3687. https://doi.org/10.1128/AAC.00680-13 DOI: https://doi.org/10.1128/AAC.00680-13
  34. Silveira, L. F. M., Baca, P., Arias-Moliz, M. T., Rodríguez-Archilla, A., & Ferrer-Luque, C. M. (2013). Antimicrobial activity of alexidine alone and associated with N-acetylcysteine against Enterococcus faecalis biofilm. International Journal of Oral Science, 5(3), 146–149. https://doi.org/10.1038/ijos.2013.58 DOI: https://doi.org/10.1038/ijos.2013.58
  35. Spallone, A., & Schwartz, I. S. (2021). Emerging Fungal Infections. In Infectious Disease Clinics of North America (Vol. 35, Issue 2, pp. 261-277). W.B. Saunders. https://doi.org/10.1016/j.idc.2021.03.014 DOI: https://doi.org/10.1016/j.idc.2021.03.014
  36. Teng, J., Iida, K., Imai, A., Nakano, M., Tada, T., & Iida, H. (2013). Hyperactive and hypoactive mutations in Cch1, a yeast homologue of the voltage-gated calcium-channel pore-forming subunit. Microbiology, 159(Pt_5), 970–979. DOI: https://doi.org/10.1099/mic.0.064030-0
  37. UniProt: the universal protein knowledgebase in 2023. (2023). Nucleic Acids Research, 51(D1), D523–D531.
  38. Vandeputte, P., Ferrari, S., & Coste, A. T. (2012). Antifungal resistance and new strategies to control fungal infections. In International Journal of Microbiology. https://doi.org/10.1155/2012/713687 DOI: https://doi.org/10.1155/2012/713687
  39. Vandeputte, P., Tronchin, G., Larcher, G., Ernoult, E., Berges, T., Chabasse, D., & Bouchara, J.-P. (2008). A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrobial Agents and Chemotherapy, 52(10), 3701–3709. DOI: https://doi.org/10.1128/AAC.00423-08
  40. Vermitsky, J. P., & Edlind, T. D. (2004). Azole resistance in Candida glabrata: Coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrobial Agents and Chemotherapy, 48(10), 3773–3781. https://doi.org/10.1128/AAC.48.10.3773-3781.2004 DOI: https://doi.org/10.1128/AAC.48.10.3773-3781.2004
  41. Wall, G., Chaturvedi, A. K., Wormley, F. L., Wiederhold, N. P., Patterson, H. P., Patterson, T. F., & Lopez-Ribot, J. L. (2018a). Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. https://doi.org/10.1128/AAC
  42. Wall, G., Chaturvedi, A. K., Wormley, F. L., Wiederhold, N. P., Patterson, H. P., Patterson, T. F., & Lopez-Ribot, J. L. (2018b). Screening a Repurposing Library for Inhibitors of Multidrug-Resistant Candida auris Identifies Ebselen as a Repositionable Candidate for Antifungal Drug Development. https://doi.org/10.1128/AAC DOI: https://doi.org/10.1128/AAC.01084-18
  43. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., & Bordoli, L. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.
  44. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427 DOI: https://doi.org/10.1093/nar/gky427
  45. Weig, M., Jansch, L., Groß, U., De Koster, C. G., Klis, F. M., & De Groot, P. W. J. (2004). Systematic identification in silico of covalently bound cell wall proteins and analysis of protein–polysaccharide linkages of the human pathogen Candida glabrata. Microbiology, 150(10), 3129–3144. DOI: https://doi.org/10.1099/mic.0.27256-0
  46. Xu, Z., Green, B., Benoit, N., Schatz, M., Wheelan, S., & Cormack, B. (2020). De novo genome assembly of Candida glabrata reveals cell wall protein complement and structure of dispersed tandem repeat arrays. Molecular Microbiology, 113(6), 1209–1224. DOI: https://doi.org/10.1111/mmi.14488
  47. Yip, K. W., Ito, E., Mao, X., Au, P. Y. B., Hedley, D. W., Mocanu, J. D., Bastianutto, C., Schimmer, A., & Liu, F.-F. (2006). Potential use of alexidine dihydrochloride as an apoptosis-promoting anticancer agent. Molecular Cancer Therapeutics, 5(9), 2234–2240. https://doi.org/10.1158/1535-7163.MCT-06-0134 DOI: https://doi.org/10.1158/1535-7163.MCT-06-0134
  48. Yousfi, H., Ranque, S., Cassagne, C., Rolain, J. M., & Bittar, F. (2020). Identification of repositionable drugs with novel antimycotic activity by screening the Prestwick Chemical Library against emerging invasive moulds. Journal of Global Antimicrobial Resistance, 21, 314–317. https://doi.org/10.1016/j.jgar.2020.01.002 DOI: https://doi.org/10.1016/j.jgar.2020.01.002
  49. Zhu, C., Liao, B., Ye, X., Zhou, Y., Chen, X., Liao, M., Cheng, L., Zhou, X., & Ren, B. (2021). Artemisinin elevates ergosterol levels of Candida albicans to synergise with amphotericin B against oral candidiasis. International Journal of Antimicrobial Agents, 58(3). https://doi.org/10.1016/j.ijantimicag.2021.106394 DOI: https://doi.org/10.1016/j.ijantimicag.2021.106394