Main Article Content


Bryophytes, which include liverworts, mosses, and hornworts, have a long history of traditional medicinal use and are now gaining attention for their biotechnological applications. The evolution of bryophytes and their transition from traditional medicine to biotechnological applications can be explored through various studies. With more than 25,000 species, they constitute a significant part of the terrestrial flora. Bryophytes produce a variety of secondary metabolites, including terpenoids, phenols, glycosides, fatty acids, and amino acids. Bryophytes exhibit cytotoxic and antimicrobial activities, making them promising resources for pharmaceutical, cosmetic, and food industry applications. The traditional uses of bryophytes in medicine are reported in various cultures, including traditional Chinese, Indian, and Native American medicine. Recent advancements in technology and research methodologies have revealed the intricate chemical composition and pharmacological potential of bryophytes, leading to the identification of bioactive compounds with promising therapeutic properties. However details about the potential of bryophytes are currently scattered and not thoroughly documented. The present review focuses on gathering and organizing information about bryophytes and highlighting the challenges, opportunities, and future prospects in harnessing their therapeutic potential for the benefit of global healthcare.



Antimicrobial Aspect Bryophytes Ethno-Medicinal Pharmaceutical Applications Secondary Metabolites

Article Details

How to Cite
Swarnkar, P., Gore, S., Rathore, K. S., & Singh , S. (2024). Advancement of bryophytes from traditional uses to pharmaceutical applications: A review. Environment Conservation Journal, 25(2), 628–639.


  1. Abay, G., Altun, M., Karakoc, O., Gul, F., & Demirtas, I. (2013). Insecticidal activity of fatty acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Combinatorial Chemistry & High Throughput Screening, 10(16), 806-816. DOI:
  2. Abdel-Shafi, S., Hussein, Y., Sabaa, G. A., & Abdel-Monaem, A. M. (2017). An evaluation of the antibacterial and antiviral activities of some bryophytes. Egyptian Journal of Microbiology, 0(0), 63-86. DOI:
  3. Akama, T., Shida, Y., Sugaya, T., Ishida, H., Gomi, K., & Kasai, M. (1996). Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer. Journal of Medicinal Chemistry, 39(18), 3461-3469. DOI:
  4. Alam, A., Tripathi, A., Vats, S., Behera, K., & Sharma, V. (2011). In vitro antifungal efficacies of aqueous extract of Dumortiera hirsuta (Swaegr.) Nees against sporulation and growth of postharvest phytopathogenic fungi. Archive for Bryology, 103, 1-9.
  5. Allen, D. E., & Hatfield, G. (2004). Medicinal plants in folk tradition: An ethnobotany of Britain & Ireland. Timber Press.
  6. Anchang, K. Y., & Simonsen, H. T. (2019). Developments and perspectives in bryophyte biotechnology in Sub-Saharan Africa. In Biotechnology and Bioengineering. IntechOpen. DOI:
  7. Ando, H., & Matsuo, A. (1984). Applied bryology. Advances in Bryology, 2, 133-224.
  8. Asakawa, Y. (1982). Chemical constituents of the Hepaticae. In W. Herz, H. Grisebach, & G. W. Kirby (Eds.), Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. DOI:
  9. Asakawa, Y., & Ludwiczuk, A. (2013). Bryophytes: Liverworts, mosses, and hornworts: Extraction and isolation procedures. In U. Roessner & D. Dias (Eds.), Metabolomics Tools for Natural Product Discovery (Methods in Molecular Biology, vol. 1055, pp. 1-20). Totowa, NJ: Humana Press. DOI:
  10. Asakawa, Y., & Ludwiczuk, A. (2017). Chemical constituents of bryophytes: Structures and biological activity. Journal of Natural Products, 81(3), 641-660. DOI:
  11. Asakawa, Y., Nii, K., & Higuchi, M. (2015). Identification of sesquiterpene lactones in the Bryophyta (mosses) Takakia: Takakia species are closely related chemically to the Marchantiophyta (liverworts). Natural Product Communications, 10(1), 1934578X1501000. DOI:
  12. Aslanbaba, B., Yilmaz, S., Yayintas, O. T., Ozyurt, D., & Ozturk, B. D. (2017). Total phenol content and antioxidant activity of mosses from Yenice Forest (Ida Mountain). Journal of Scientific Perspectives, 1(1), 1-12. DOI:
  13. Bailly, C., & Vergoten, G. (2023). The plagiochilins from liverworts Plagiochila: Binding to α-tubulin and drug design perspectives. DOI:
  14. Banerjee, R. D. (2000). Antimicrobial activities of bryophytes: A review. In V. Nath & A. K. Asthana (Eds.), Perspectives in Indian Bryology (pp. 55-74). Dehradun: Bishen Singh Mahendra Pal Singh.
  15. Banerjee, S. (2019). Assessment of diversity and traditional uses of bryophytes along some hill roads in a biodiversity hotspot region of India-a case study of Mizoram. International Journal of Natural Resource Ecology and Management, 4(3), 73. DOI:
  16. Beike, A., Decker, E., Frank, W., Lang, D., Scheebaum, M., Zimmer, A. & Reski, R. (2010). Applied bryology - bryotechnology. Bryophyte Diversity and Evolution, 31(1), 22. DOI:
  17. Benek, A., Canli, K., & Altuner, E. (2022). Traditional medicinal uses of mosses. Anatolian Bryology, 8(1), 57-65. DOI:
  18. Binwal, N., Joshi, P., Tewari, S. D., Bisht, S., Kandpal, M., Jalal, R., & Kohli, N. (2023). Antifungal activity of leafy liverworts against selected plant pathogenic fungi. International Journal of Ecology and Environmental Sciences, 49(4), 375-380. DOI:
  19. Bland, J. H. (1971). Forests of Lilliput: The realm of mosses and lichens. Prentice-Hall.
  20. Blazquez, M., Nelson, D., & Weijers, D. (2020). Evolution of plant hormone response pathways. Annual Review of Plant Biology, 71(1), 327-353. DOI:
  21. Bodade, R. G., Borkar, P. S., Saiful, A. M., & Khobragade, C. N. (2008). In vitro screening of bryophytes for antimicrobial activity.
  22. Bucar, M., Segota, V., Rimac, A., Koletic, N., Maric, T., & Alegro, A. (2022). Green Christmas: Bryophytes as ornamentals in Croatian traditional nativity scenes. Journal of Ethnobiology and Ethnomedicine, 18(1). DOI:
  23. Carriqui, M., Roig-Oliver, M., Brodribb, T. J., Coopman, R. E., Gill, W., Mark, K., & Flexas, J. (2019). Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytologist, 222(3), 1256-1270. DOI:
  24. Chandra, S., Chandra, D., Barh, A., Pandey, R., & Sharma, I. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of Traditional and Complementary Medicine, 7(1), 94-98. DOI:
  25. Chen, Y., Moles, A., Bu, Z., Zhang, M., Wang, Z., & Hong-yan, Z. (2021). Induced defense and its cost in two bryophyte species. American Journal of Botany, 108(5), 777-787. DOI:
  26. Cheng, A. L., Sun, X., Wu, W., & Lou, H. (2001). The inhibitory effect of a monocyclic bisbibenzylricardin D on the biofilms of Candida albicans. Biological and Pharmaceutical Bulletin, 24, 1417-1421. DOI:
  27. Cianciullo, P., Cimmino, F., Maresca, V., Sorbo, S., Bontempo, P., & Basile, A. (2022). Antitumor activities from secondary metabolites and their derivatives in bryophytes: A brief review. Applied Biosciences, 1(1), 73-94. DOI:
  28. Commisso, M., Guarino, F., Marchi, L., Muto, A., Piro, A., & Degola, F. (2021). Bryo-activities: A review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants, 10(2), 203. DOI:
  29. Cox, C. J., Goffinet, B., Wickett, N. J., Boles, S. B., & Shaw, A. J. (2010). Moss diversity: A molecular phylogenetic analysis of genera. Phytotaxa, 9(1), 175-195. DOI:
  30. Dayan, F., & Romagni, J. (2001). Lichens: A potential source of pesticides. Pesticide Outlook, 12, 229-232. DOI:
  31. Demirbag, M., Yıldırım, V., Batan, N., Yılmaz, P. D., Emre, İ., & Alataş, M. (2022). The biochemical properties of some species of Dicranum Hedw. Anatolian Bryology, 8(2), 140-148. DOI:
  32. Deora, G. S., & Guhil, N. (2014). Antifungal potential of Bryum cellulare against some common diseases of maize. International Journal of Research and Applied Natural and Social Sciences, 2, 21-28.
  33. Deora, G. S., & Guhil, N. (2015). Phytochemical analysis and antifungal activity of moss Bryum cellulare against some phytopathogenic fungi. International Journal of Pharmaceutical Sciences and Research, 6(2), 688.
  34. Deora, G. S., Deepti, S., & Gunjan, V. (2010). Antifungal potential of Philonotis revoluta - a moss against certain phytopathogenic fungi. Journal of Pure and Applied Microbiology, 4(1), 425-428.
  35. Ding, H. (1982). Medicinal spore-bearing plants of China. Shanghai Science and Technology Press.
  36. Drobnik, J., & Stebel, A. (2021). Four centuries of medicinal mosses and liverworts in European ethnopharmacy and scientific pharmacy: A review. Plants, 10(7), 1296. DOI:
  37. Drobnik, J., & Stebel, A. (2014). Medicinal mosses in pre-Linnaean bryophyte floras of Central Europe: An example from the natural history of Poland. Journal of Ethnopharmacology, 153(3), 682-685. DOI:
  38. Dziwak, M., Wróblewska, K., Szumny, A., & Galek, R. (2022). Modern use of bryophytes as a source of secondary metabolites. Agronomy, 12(6), 1456. DOI:
  39. Elumeeva, T. G., Soudzilovskaia, N. A., During, H. J., & Cornelissen, J. H. C. (2011). The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. Journal of Vegetation Science, 22(1), 152-164. DOI:
  40. Fernandes, A., Mazzei, J., Alencar, A., Evangelista, H., & Felzenszwalb, I. (2011). Effects of Sanionia uncinata extracts in protecting against and inducing DNA cleavage by reactive oxygen species. Redox Report, 16(5), 201-207. DOI:
  41. Flowers, S. (1957). Ethnobryology of the osuite Indians of Utah. The Bryologist, 60(1), 11-14. DOI:
  42. Frahm, J. P. (2004). Recent developments of commercial products from bryophytes. The Bryologist, 107, 277-283. DOI:[0277:RDOCPF]2.0.CO;2
  43. Franquemont, C., Plowman, T., Franquemont, E., King, S. R., Niezgoda, C., Davis, W., & Sperling, C. R. (1990). The ethnobotany of Chinchero, an Andean community in southern Peru. DOI:
  44. Gahtori, D., & Chaturvedi, P. (2011). Antifungal and antibacterial potential of methanol and chloroform extracts of Marchantia polymorpha L. Archives of Phytopathology and Plant Protection, 44(8), 726–731. DOI:
  45. Glime, J. M. (2007). Bryophyte ecology. In Physiological Ecology (Vol. 1). Michigan Technological University, International Association of Bryologists. Retrieved from
  46. Goffinet, B., & Shaw, A. J. (2008). Bryophyte Biology. Cambridge: Cambridge University Press, pp. 479. DOI:
  47. Gundale, M., DeLuca, T., & Nordin, A. (2011). Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 17(8), 2743-2753. DOI:
  48. Gupta, A., Shah, S., Saiyed, G., Pathan, N., Dudha, H., Das, S., & Palekar, S. (2018). Exploration of flavonoids from Physcomitrella patens for determining its antimicrobial potential. International Journal of Scientific Research in Biological Sciences, 5(4), 76-81. DOI:
  49. He, C., Z, Z., Wang, Z., Shi, K., Wu, Q., & Wang, D. (2021). Bioindication of heavy metals using bryophyte communities in the Songtao manganese carbonate ore region, China. DOI:
  50. Hernandez-Rodriguez, E., & Delgadillo-Moya, C. (2020). The ethnobotany of bryophytes in Mexico. Botanical Sciences, 99(1), 13-27. DOI:
  51. Hong, M., Kim, T. H., Sowndhararajan, K., & Kim, S. (2021). Chemical composition of common liverwort (Marchantia polymorpha L.) and Racomitrium moss (Racomitrium canescens (Hedw.) Brid) in Korea. Weed & Turfgrass Science, 10(4), 365-374. DOI:
  52. Joshi, S., Bhardwaj, P., & Alam, A. (2022). Bryophytes as a safeguard of fruits from postharvest fungal diseases: A review. Natural Resources for Human Health, 3(2), 327-334. DOI:
  53. Kirisanth, A., Nafas, M. N. M., Dissanayake, R. K., & Wijayabandara, J. (2020). Antimicrobial and alpha-amylase inhibitory activities of organic extracts of selected Sri Lankan bryophytes. Evidence-Based Complementary and Alternative Medicine, 2020, 1-6. DOI:
  54. Klavina, L., Spriņģe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D., & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules, 20(9), 17221-17243. DOI:
  55. Kumar, K., Singh, K. K., Asthana, A. K., & Nath, V. (2000). Ethnotherapeutics of bryophyte Plagiochasma appendiculatum among the Gaddi tribes of Kangra valley, Himachal Pradesh, India. Pharmaceutical biology, 38(5), 353-356. DOI:
  56. Lang, P., & Murphy, K. (2011). Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams. Hydrobiologia, 679(1), 1-17. DOI:
  57. Li, C., Zhang, Z., Wang, Z., & Wu, Q. (2020). Effects of environmental factors and heavy metals on the vertical distribution of bryophytes in a sinkhole environment. Plant Biology, 22(5), 822-831. DOI:
  58. Li, H., Qu, Y., Zeng, X., Zhang, H., Ling, C., & Luo, C. (2021). Dynamic response of the vegetation carbon storage in the Sanjiang Plain to changes in land use/cover and climate. Heritage Science, 9(1). DOI:
  59. Li, Y., Zhang, P., Li, M., Shakoor, N., Adeel, M., Zhou, P., & Rui, Y. (2022). Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. Pest Management Science, 79(1), 21-36. DOI:
  60. Lou, H. X., Li, G. Y., & Wang, F. Q. (2002). A cytotoxic diterpenoid and antifungal phenolic compound from Frullonia muscicola Steph. Journal of Asian Natural Product Research, 4, 87-94. DOI:
  61. Lu, D., Zhang, Z. H., & Wang, Z. H. (2021). Heavy metal uptake by bryophytes and vascular plants in a manganese carbonate slag field, China. Plant Biology, 24(2), 380-386. DOI:
  62. Lu, Y., Eiríksson, F. F., Þorsteinsdóttir, M., & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes—production, biosynthesis, analysis and applications. Plants, 8(11), 524. DOI:
  63. Lu, Y., Eiríksson, F. F., Þorsteinsdóttir, M., & Simonsen, H. T. (2022). Lipidomic analysis of moss species Bryum pseudotriquetrum and Physcomitrium patens under cold stress. Plant-Environment Interactions, 3(6), 254-263. DOI:
  64. Ludwiczuk, A., & Asakawa, Y. (2014). Fingerprinting of secondary metabolites of liverworts: Chemosystematic approach. Journal of AOAC International, 97(5), 1234-1243. DOI:
  65. Lunic, T., Mandić, M., Pavlović, M., Sabovljevic, A., Sabovljević, M., Nedeljković, B., & Božić, B. (2022). The influence of seasonality on secondary metabolite profiles and neuroprotective activities of moss Hypnum cupressiforme extracts: In vitro and in silico study. Plants, 11(1), 123. DOI:
  66. Lunic, T., Oalđe, M., Mandić, M., Sabovljević, A., Sabovljević, M., Gašić, U., & Nedeljković, B. (2020). Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules, 25(15), 3343. DOI:
  67. Maresca, V., Sorbo, S., & Sorbo, S. (2021). Antioxidant and antibacterial properties of extracts and bioactive compounds in bryophytes. Applied Sciences, 11(12), 160. DOI:
  68. Marko, S. (2001). Bryophytes as a potential source of medicinal compounds. Pregled Rev, 21(1), 17-29.
  69. McCann, H. C., Nahal, H., Thakur, S., & Guttman, D. S. (2012). Identification of innate immunity elicitors using molecular signatures of natural selection. Proceedings of the National Academy of Sciences, 109(11), 4215-4220. DOI:
  70. Miller, J. W., & Ellsworth, R. (1979). Mastery Learning: The Effects of Time Constraints and Unit Mastery Requirements. Educational Research Quarterly, 4(4), 40-48.
  71. Motti, R., Palma, A., & Falco, B. (2023). Bryophytes used in folk medicine: An ethnobotanical overview. Horticulturae, 9(2), 137. DOI:
  72. Nath, V., Singh, M., Rawat, A. K. S., & Govindrajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78, 156-158.
  73. Ohta, Y., Andersen, N. H., & Liu, C.-B. (1977). Sesquiterpene constituents of two liverworts of genus Diplophyllum. Tetrahedron, 33(6), 617-628. ). https://doi:10.1016/0040-4020(77)80301-3 DOI:
  74. Olofin, T. A., Akande, A. O., & Oyetayo, V. O. (2013). Assessment of the antimicrobial properties of fractions obtained from bryophytes. Journal of Microbiology and Antimicrobials, 5(5), 50-54. DOI:
  75. Pandey, S. N., & Alam, A. (2020). Bryo-pharmaceuticals. In Advanced Pharmacological Uses of Medicinal Plants and Natural Products (pp. 269-284). DOI:
  76. Peters, K., Gorzolka, K., Bruelheide, H., & Neumann, S. (2018). Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution, 8(17), 9105-9117. DOI:
  77. Peters, K., Treutler, H., Döll, S., Kindt, A. S., Hankemeier, T., & Neumann, S. (2019). Chemical diversity and classification of secondary metabolites in nine bryophyte species. Metabolites, 10(9), 222. DOI:
  78. Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment Development and Sustainability, 7(2), 229-252. DOI:
  79. Provenzano, F., Sánchez, J., Rao, E., Santonocito, R., Ditta, L., Linares, I., et al. (2019). Water extract of Cryphaea heteromalla (Hedw.) D. Mohr bryophyte as a natural powerful source of biologically active compounds. International Journal of Molecular Sciences, 20(22), 5560. DOI:
  80. Qu, J., Xie, C., Guo, H., Yu, W., & Lou, H. (2007). Antifungal dibenzofuran bis (bibenzyl) s from the liverwort Asterella angusta. Phytochemistry, 68(13), 1767-1774. DOI:
  81. Rao, G. N., & Chatterjee, R. (2014). Folklore utilization of bryophytes among the tribal regions of north coastal Andhra. International Journal of Environment, 3(4), 101-108. DOI:
  82. Reboledo, G., Agorio, A., Vignale, L., Batista-García, R., & León, I. (2020). Botrytis cinerea transcriptome during the infection process of the bryophyte Physcomitrium patens and angiosperms. Journal of Fungi, 7(1), 11. DOI:
  83. Ren, J., Liu, F., Yang, M., Zhu, J., Luo, X., & Liu, R. (2021). The pioneering role of bryophytes in ecological restoration of manganese waste residue areas, southwestern China. Journal of Chemistry, 1-19. DOI:
  84. Rol, C., Tam, Y., Yoke, C., Tan, J., Abbasiliasi, S., Kee, W., & Hock, O. (2022). Preliminary assessment of Polytrichum commune extract as an antimicrobial soap ingredient. Journal of Experimental Biology and Agricultural Sciences, 10(4), 894-901. DOI:
  85. Romani, F., Banić, E., Florent, S. N., Kanazawa, T., Goodger, J. Q., Mentink, R. A., & Moreno, J. E. (2020). Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Current Biology, 30(14), 2815-2828. DOI:
  86. Ryu, C. M., Hu, C. H., Reddy, M. S., & Kloepper, J. W. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160(2), 413-420. DOI:
  87. Sabovljevic, A., Sakovic, M., Glamolija, J., Ciric, A., Vujicic, M., Pejin, B., & Sabovljevic, M. (2011). Bio activities of extract of some axenically farmed and naturally grown bryophytes. Journal of Medicinal Plant Research, 5, 656-671.
  88. Sabovljevic, A., Sokovic, M., Sabovljevic, M., & Grubisic, D. (2006). Antimicrobial activity of Bryum argenteum. Fitoterapia, 77(2), 144-145. DOI:
  89. Sabovljevic, A., Sokovic, M., Glamoclija, J., Ciric, A., Vujicic, M., Pejin, B., & Sabovljevic, M. (2010). Comparison of extract bioactivities of in situ and in vitro grown selected bryophyte species. African Journal of Microbiology Research, 4(9), 808-812.
  90. Sabovljević, M., Bijelović, A., & Grubišić, D. (2001). Bryophyta, potencijalne lekovite sirovine. Lekovite sirovine, (21), 17-29.
  91. Sabovljevic, M., Sabovljević, A., Ikram, N., Peramuna, A., Bae, H., & Simonsen, H. (2016). Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genetic Resources, 14(4), 314-327. DOI:
  92. Savaroglu, F., Ilhan, S., & Filik-Iscen, C. (2011). An evaluation of the antimicrobial activity of some Turkish mosses. Journal of Medicinal Plants Research, 5(14), 3286-3292.
  93. Savaroglu, F., Iscen, C., Oztopeu-Vaton, F.P., Kadabree, S., Ilhah, S., & Uyar, R. (2011). Determination of antimicrobial and antiproliferative activity of the aquatic moss Fontanilis antipyretica Hedw. Turkish Journal of Botany, 35, 361-369. DOI:
  94. Scher, J. M., Speakman, J. B., Zapp, J., & Becker, H. (2004). Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) SF Gray. Phytochemistry, 65(18), 2583-2588. DOI:
  95. Secretariat, B. (2014). Sri Lanka’s Fifth National Report to the Convention on Biological Diversity. Ministry of Environment & Renewable Energy.
  96. Shirsat, R. P. (2008). Ethnomedicinal uses of some common lower plants used by tribals of Melghat region (MS) India. Ethnobotanical Leaflets, 2008(1), 88.
  97. Singh, M., Rawat, A. K. S., & Govindarajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78(2), 156-158.
  98. Singh, M., Rawat, A. K., & Govindrajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78, 56-158. DOI:
  99. Singh, M., Singh, S., Nath, V., Sahu, V., & Singh Rawat, A. K. (2011). Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections. Pharmaceutical Biology, 49(5), 526-530. DOI:
  100. Singh, S., Gore, S., Gupta, S., & Singh, G. K. (2023). Natural extracts from Marchantia polymorpha against plant pathogens growth inhibition. Environment Conservation Journal, 24(2), 311-319. DOI:
  101. Soudzilovskaia, N. A., v. Bodegom, P. M., & Cornelissen, J. H. C. (2013). Dominant Bryophyte Control Over High-latitude Soil Temperature Fluctuations Predicted by Heat Transfer Traits, Field Moisture Regime and Laws of Thermal Insulation. Functional Ecology, 27(6), 1442-1454. DOI:
  102. Stankovic, J., Sabovljević, A., & Sabovljević, M. S. (2018). Bryophytes and heavy metals: a review. Acta Botanica Croatica, 77(2), 109-118. DOI:
  103. Subhisha, S., & Subramoniam, A. (2005). Antifungal activities of a steroid from Pallavicinia lyellii, a liverwort. Indian Journal of Pharmacology, 37(5), 304-308. DOI:
  104. Tooren, B. F. V. (1990). Bryophyte Interactions with Other Plants. Botanical Journal of the Linnean Society, 104, 79-98. DOI:
  105. Tyler, G. (1990). Bryophytes and heavy metals: a literature review. Botanical Journal of the Linnean Society, 104(1-3), 231-253. DOI:
  106. Valeeva, L., Dague, A., Hall, M., Tikhonova, A., Sharipova, M., Valentovic, M., & Shakirov, E. (2022). Antimicrobial activities of secondary metabolites from model mosses. Antibiotics, 11(8), 1004. DOI:
  107. Vanderpoorten, A., & Goffinet, B. (2009). Introduction to bryophytes. Cambridge University Press. DOI:
  108. Veljic, M., Đurić, A., Soković, M., Ćirić, A., Glamočlija, J., & Marin, P. D. (2009). Antimicrobial activity of methanol extracts of Fontinalis antipyretica, Hypnum cupressiforme, and Ctenidium molluscum. Archives of Biological Sciences, 61(2), 225-229. DOI:
  109. Veljic, M., Tarbuk, M., Marin, P. D., Ćirić, A., Soković, M., & Marin, M. (2008). Antimicrobial activity of methanol extracts of mosses from Serbia. Pharmaceutical Biology, 46(12), 871-875. DOI:
  110. Vollar, M., Gyovai, A., Szűcs, P., Zupkó, I., Marschall, M., Csupor-Löffler, B., & Csupor, D. (2018). Antiproliferative and antimicrobial activities of selected bryophytes. Molecules, 23(7), 1520. DOI:
  111. Von Schwartzenberg, K., Schultze, W., & Kassner, H. (2004). The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Reports, 22(10), 780–786. DOI:
  112. Wang, C., Liu, Y., Li, S., & Han, G. (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology, 167(3), 872-886. DOI:
  113. Watt, G. (1890). Dictionary of the economic products of India vol. 3. Allen & Co, London. 85 pages.
  114. Wu, Y., Zhou, Y., Li, X., Gao, S., Cheng, A., & Lou, H. (2018). A bHLH transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum. Plant and Cell Physiology, 59(6), 1187-1199. DOI:
  115. Wyatt, R., Odrzykoski, I., & Stoneburner, A. (1989). High levels of genetic variability in the haploid moss Plagiomnium ciliare. Evolution, 43(5), 1085-1096. DOI:
  116. Xie, C., & Lou, H. (2009). Secondary metabolites in bryophytes: an ecological aspect. Chemistry & Biodiversity, 6(3), 303-312. DOI:
  117. Yayintas, O., & Irkin, L. (2018). Bryophytes as hidden treasure. Health Sciences Quarterly, 2(1), 71-83. DOI:
  118. Yongabi, K. A., Novakovie, M., Bukvicki, D., Reeb, C., & Asakawa, Y. (2016). Management of diabetic bacterial foot infections with organic extracts of liverwort Marchantia debilis from Cameroon. Natural Product Communications, 9(11), 1934578X1601100. DOI:
  119. Zhao, M., Cheng, J., Guo, B., Duan, J., & Che, C. (2018). Momilactone and related diterpenoids as potential agricultural chemicals. Journal of Agricultural and Food Chemistry, 66(30), 7859-7872. DOI:
  120. Zhou, Y., Zhang, Y., Liu, H., Zhang, X., Ni, R., Wang, P., & Cheng, A. (2019). Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biology, 19(1). DOI: