Main Article Content
Abstract
Bryophytes, which include liverworts, mosses, and hornworts, have a long history of traditional medicinal use and are now gaining attention for their biotechnological applications. The evolution of bryophytes and their transition from traditional medicine to biotechnological applications can be explored through various studies. With more than 25,000 species, they constitute a significant part of the terrestrial flora. Bryophytes produce a variety of secondary metabolites, including terpenoids, phenols, glycosides, fatty acids, and amino acids. Bryophytes exhibit cytotoxic and antimicrobial activities, making them promising resources for pharmaceutical, cosmetic, and food industry applications. The traditional uses of bryophytes in medicine are reported in various cultures, including traditional Chinese, Indian, and Native American medicine. Recent advancements in technology and research methodologies have revealed the intricate chemical composition and pharmacological potential of bryophytes, leading to the identification of bioactive compounds with promising therapeutic properties. However details about the potential of bryophytes are currently scattered and not thoroughly documented. The present review focuses on gathering and organizing information about bryophytes and highlighting the challenges, opportunities, and future prospects in harnessing their therapeutic potential for the benefit of global healthcare.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abay, G., Altun, M., Karakoc, O., Gul, F., & Demirtas, I. (2013). Insecticidal activity of fatty acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Combinatorial Chemistry & High Throughput Screening, 10(16), 806-816. DOI: https://doi.org/10.2174/13862073113169990049
- Abdel-Shafi, S., Hussein, Y., Sabaa, G. A., & Abdel-Monaem, A. M. (2017). An evaluation of the antibacterial and antiviral activities of some bryophytes. Egyptian Journal of Microbiology, 0(0), 63-86. https://doi.org/10.21608/ejm.2017.893.1020 DOI: https://doi.org/10.21608/ejm.2017.893.1020
- Akama, T., Shida, Y., Sugaya, T., Ishida, H., Gomi, K., & Kasai, M. (1996). Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer. Journal of Medicinal Chemistry, 39(18), 3461-3469. https://doi.org/10.1021/jm950938g DOI: https://doi.org/10.1021/jm950938g
- Alam, A., Tripathi, A., Vats, S., Behera, K., & Sharma, V. (2011). In vitro antifungal efficacies of aqueous extract of Dumortiera hirsuta (Swaegr.) Nees against sporulation and growth of postharvest phytopathogenic fungi. Archive for Bryology, 103, 1-9.
- Allen, D. E., & Hatfield, G. (2004). Medicinal plants in folk tradition: An ethnobotany of Britain & Ireland. Timber Press.
- Anchang, K. Y., & Simonsen, H. T. (2019). Developments and perspectives in bryophyte biotechnology in Sub-Saharan Africa. In Biotechnology and Bioengineering. IntechOpen. https://doi.org/10.5772/intechopen.81692 DOI: https://doi.org/10.5772/intechopen.81692
- Ando, H., & Matsuo, A. (1984). Applied bryology. Advances in Bryology, 2, 133-224.
- Asakawa, Y. (1982). Chemical constituents of the Hepaticae. In W. Herz, H. Grisebach, & G. W. Kirby (Eds.), Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. https://doi.org/10.1007/978-3-7091-8677-0_1 DOI: https://doi.org/10.1007/978-3-7091-8677-0
- Asakawa, Y., & Ludwiczuk, A. (2013). Bryophytes: Liverworts, mosses, and hornworts: Extraction and isolation procedures. In U. Roessner & D. Dias (Eds.), Metabolomics Tools for Natural Product Discovery (Methods in Molecular Biology, vol. 1055, pp. 1-20). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-577-4_1 DOI: https://doi.org/10.1007/978-1-62703-577-4_1
- Asakawa, Y., & Ludwiczuk, A. (2017). Chemical constituents of bryophytes: Structures and biological activity. Journal of Natural Products, 81(3), 641-660. https://doi.org/10.1021/acs.jnatprod.6b01046 DOI: https://doi.org/10.1021/acs.jnatprod.6b01046
- Asakawa, Y., Nii, K., & Higuchi, M. (2015). Identification of sesquiterpene lactones in the Bryophyta (mosses) Takakia: Takakia species are closely related chemically to the Marchantiophyta (liverworts). Natural Product Communications, 10(1), 1934578X1501000. DOI: https://doi.org/10.1177/1934578X1501000104
- Aslanbaba, B., Yilmaz, S., Yayintas, O. T., Ozyurt, D., & Ozturk, B. D. (2017). Total phenol content and antioxidant activity of mosses from Yenice Forest (Ida Mountain). Journal of Scientific Perspectives, 1(1), 1-12. https://doi.org/10.26900/jsp.2017.0 DOI: https://doi.org/10.26900/jsp.2017.0
- Bailly, C., & Vergoten, G. (2023). The plagiochilins from liverworts Plagiochila: Binding to α-tubulin and drug design perspectives. https://doi.org/10.20944/preprints202304.0566.v1 DOI: https://doi.org/10.20944/preprints202304.0566.v1
- Banerjee, R. D. (2000). Antimicrobial activities of bryophytes: A review. In V. Nath & A. K. Asthana (Eds.), Perspectives in Indian Bryology (pp. 55-74). Dehradun: Bishen Singh Mahendra Pal Singh.
- Banerjee, S. (2019). Assessment of diversity and traditional uses of bryophytes along some hill roads in a biodiversity hotspot region of India-a case study of Mizoram. International Journal of Natural Resource Ecology and Management, 4(3), 73. https://doi.org/10.11648/j.ijnrem.20190403.12 DOI: https://doi.org/10.11648/j.ijnrem.20190403.12
- Beike, A., Decker, E., Frank, W., Lang, D., Scheebaum, M., Zimmer, A. & Reski, R. (2010). Applied bryology - bryotechnology. Bryophyte Diversity and Evolution, 31(1), 22. https://doi.org/10.11646/bde.31.1.7 DOI: https://doi.org/10.11646/bde.31.1.7
- Benek, A., Canli, K., & Altuner, E. (2022). Traditional medicinal uses of mosses. Anatolian Bryology, 8(1), 57-65. https://doi.org/10.26672/anatolianbryology.1061190 DOI: https://doi.org/10.26672/anatolianbryology.1061190
- Binwal, N., Joshi, P., Tewari, S. D., Bisht, S., Kandpal, M., Jalal, R., & Kohli, N. (2023). Antifungal activity of leafy liverworts against selected plant pathogenic fungi. International Journal of Ecology and Environmental Sciences, 49(4), 375-380. DOI: https://doi.org/10.55863/ijees.2023.2700
- Bland, J. H. (1971). Forests of Lilliput: The realm of mosses and lichens. Prentice-Hall.
- Blazquez, M., Nelson, D., & Weijers, D. (2020). Evolution of plant hormone response pathways. Annual Review of Plant Biology, 71(1), 327-353. https://doi.org/10.1146/annurev-arplant-050718-100309 DOI: https://doi.org/10.1146/annurev-arplant-050718-100309
- Bodade, R. G., Borkar, P. S., Saiful, A. M., & Khobragade, C. N. (2008). In vitro screening of bryophytes for antimicrobial activity.
- Bucar, M., Segota, V., Rimac, A., Koletic, N., Maric, T., & Alegro, A. (2022). Green Christmas: Bryophytes as ornamentals in Croatian traditional nativity scenes. Journal of Ethnobiology and Ethnomedicine, 18(1). https://doi.org/10.1186/s13002-022-00516-w DOI: https://doi.org/10.1186/s13002-022-00516-w
- Carriqui, M., Roig-Oliver, M., Brodribb, T. J., Coopman, R. E., Gill, W., Mark, K., & Flexas, J. (2019). Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytologist, 222(3), 1256-1270. DOI: https://doi.org/10.1111/nph.15675
- Chandra, S., Chandra, D., Barh, A., Pandey, R., & Sharma, I. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of Traditional and Complementary Medicine, 7(1), 94-98. https://doi.org/10.1016/j.jtcme.2016.01.007 DOI: https://doi.org/10.1016/j.jtcme.2016.01.007
- Chen, Y., Moles, A., Bu, Z., Zhang, M., Wang, Z., & Hong-yan, Z. (2021). Induced defense and its cost in two bryophyte species. American Journal of Botany, 108(5), 777-787. https://doi.org/10.1002/ajb2.1654 DOI: https://doi.org/10.1002/ajb2.1654
- Cheng, A. L., Sun, X., Wu, W., & Lou, H. (2001). The inhibitory effect of a monocyclic bisbibenzylricardin D on the biofilms of Candida albicans. Biological and Pharmaceutical Bulletin, 24, 1417-1421. DOI: https://doi.org/10.1248/bpb.32.1417
- Cianciullo, P., Cimmino, F., Maresca, V., Sorbo, S., Bontempo, P., & Basile, A. (2022). Antitumor activities from secondary metabolites and their derivatives in bryophytes: A brief review. Applied Biosciences, 1(1), 73-94. https://doi.org/10.3390/applbiosci1010005 DOI: https://doi.org/10.3390/applbiosci1010005
- Commisso, M., Guarino, F., Marchi, L., Muto, A., Piro, A., & Degola, F. (2021). Bryo-activities: A review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants, 10(2), 203. DOI: https://doi.org/10.3390/plants10020203
- Cox, C. J., Goffinet, B., Wickett, N. J., Boles, S. B., & Shaw, A. J. (2010). Moss diversity: A molecular phylogenetic analysis of genera. Phytotaxa, 9(1), 175-195. DOI: https://doi.org/10.11646/phytotaxa.9.1.10
- Dayan, F., & Romagni, J. (2001). Lichens: A potential source of pesticides. Pesticide Outlook, 12, 229-232. https://doi.org/10.1039/B110543B DOI: https://doi.org/10.1039/b110543b
- Demirbag, M., Yıldırım, V., Batan, N., Yılmaz, P. D., Emre, İ., & Alataş, M. (2022). The biochemical properties of some species of Dicranum Hedw. Anatolian Bryology, 8(2), 140-148. https://doi.org/10.26672/anatolianbryology.1205930 DOI: https://doi.org/10.26672/anatolianbryology.1205930
- Deora, G. S., & Guhil, N. (2014). Antifungal potential of Bryum cellulare against some common diseases of maize. International Journal of Research and Applied Natural and Social Sciences, 2, 21-28.
- Deora, G. S., & Guhil, N. (2015). Phytochemical analysis and antifungal activity of moss Bryum cellulare against some phytopathogenic fungi. International Journal of Pharmaceutical Sciences and Research, 6(2), 688.
- Deora, G. S., Deepti, S., & Gunjan, V. (2010). Antifungal potential of Philonotis revoluta - a moss against certain phytopathogenic fungi. Journal of Pure and Applied Microbiology, 4(1), 425-428.
- Ding, H. (1982). Medicinal spore-bearing plants of China. Shanghai Science and Technology Press.
- Drobnik, J., & Stebel, A. (2021). Four centuries of medicinal mosses and liverworts in European ethnopharmacy and scientific pharmacy: A review. Plants, 10(7), 1296. https://doi.org/10.3390/plants10071296 DOI: https://doi.org/10.3390/plants10071296
- Drobnik, J., & Stebel, A. (2014). Medicinal mosses in pre-Linnaean bryophyte floras of Central Europe: An example from the natural history of Poland. Journal of Ethnopharmacology, 153(3), 682-685. DOI: https://doi.org/10.1016/j.jep.2014.03.025
- Dziwak, M., Wróblewska, K., Szumny, A., & Galek, R. (2022). Modern use of bryophytes as a source of secondary metabolites. Agronomy, 12(6), 1456. DOI: https://doi.org/10.3390/agronomy12061456
- Elumeeva, T. G., Soudzilovskaia, N. A., During, H. J., & Cornelissen, J. H. C. (2011). The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. Journal of Vegetation Science, 22(1), 152-164. https://doi.org/10.1111/j.1654-1103.2010.01237.x DOI: https://doi.org/10.1111/j.1654-1103.2010.01237.x
- Fernandes, A., Mazzei, J., Alencar, A., Evangelista, H., & Felzenszwalb, I. (2011). Effects of Sanionia uncinata extracts in protecting against and inducing DNA cleavage by reactive oxygen species. Redox Report, 16(5), 201-207. https://doi.org/10.1179/1351000211y.0000000011 DOI: https://doi.org/10.1179/1351000211Y.0000000011
- Flowers, S. (1957). Ethnobryology of the osuite Indians of Utah. The Bryologist, 60(1), 11-14. DOI: https://doi.org/10.2307/3240044
- Frahm, J. P. (2004). Recent developments of commercial products from bryophytes. The Bryologist, 107, 277-283. DOI: https://doi.org/10.1639/0007-2745(2004)107[0277:RDOCPF]2.0.CO;2
- Franquemont, C., Plowman, T., Franquemont, E., King, S. R., Niezgoda, C., Davis, W., & Sperling, C. R. (1990). The ethnobotany of Chinchero, an Andean community in southern Peru. DOI: https://doi.org/10.5962/bhl.title.2559
- Gahtori, D., & Chaturvedi, P. (2011). Antifungal and antibacterial potential of methanol and chloroform extracts of Marchantia polymorpha L. Archives of Phytopathology and Plant Protection, 44(8), 726–731. DOI: https://doi.org/10.1080/03235408.2010.516083
- Glime, J. M. (2007). Bryophyte ecology. In Physiological Ecology (Vol. 1). Michigan Technological University, International Association of Bryologists. Retrieved from http://www.bryoecol.mtu.edu
- Goffinet, B., & Shaw, A. J. (2008). Bryophyte Biology. Cambridge: Cambridge University Press, pp. 479. DOI: https://doi.org/10.1017/CBO9780511754807
- Gundale, M., DeLuca, T., & Nordin, A. (2011). Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 17(8), 2743-2753. https://doi.org/10.1111/j.1365-2486.2011.02407.x DOI: https://doi.org/10.1111/j.1365-2486.2011.02407.x
- Gupta, A., Shah, S., Saiyed, G., Pathan, N., Dudha, H., Das, S., & Palekar, S. (2018). Exploration of flavonoids from Physcomitrella patens for determining its antimicrobial potential. International Journal of Scientific Research in Biological Sciences, 5(4), 76-81. https://doi.org/10.26438/ijsrbs/v5i4.7681 DOI: https://doi.org/10.26438/ijsrbs/v5i4.7681
- He, C., Z, Z., Wang, Z., Shi, K., Wu, Q., & Wang, D. (2021). Bioindication of heavy metals using bryophyte communities in the Songtao manganese carbonate ore region, China. https://doi.org/10.21203/rs.3.rs-202426/v1 DOI: https://doi.org/10.21203/rs.3.rs-202426/v1
- Hernandez-Rodriguez, E., & Delgadillo-Moya, C. (2020). The ethnobotany of bryophytes in Mexico. Botanical Sciences, 99(1), 13-27. https://doi.org/10.17129/botsci.2685 DOI: https://doi.org/10.17129/botsci.2685
- Hong, M., Kim, T. H., Sowndhararajan, K., & Kim, S. (2021). Chemical composition of common liverwort (Marchantia polymorpha L.) and Racomitrium moss (Racomitrium canescens (Hedw.) Brid) in Korea. Weed & Turfgrass Science, 10(4), 365-374. DOI: https://doi.org/10.3390/plants10102075
- Joshi, S., Bhardwaj, P., & Alam, A. (2022). Bryophytes as a safeguard of fruits from postharvest fungal diseases: A review. Natural Resources for Human Health, 3(2), 327-334. https://doi.org/10.53365/nrfhh/145476 DOI: https://doi.org/10.53365/nrfhh/145476
- Kirisanth, A., Nafas, M. N. M., Dissanayake, R. K., & Wijayabandara, J. (2020). Antimicrobial and alpha-amylase inhibitory activities of organic extracts of selected Sri Lankan bryophytes. Evidence-Based Complementary and Alternative Medicine, 2020, 1-6. https://doi.org/10.1155/2020/3479851 DOI: https://doi.org/10.1155/2020/3479851
- Klavina, L., Spriņģe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D., & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules, 20(9), 17221-17243. DOI: https://doi.org/10.3390/molecules200917221
- Kumar, K., Singh, K. K., Asthana, A. K., & Nath, V. (2000). Ethnotherapeutics of bryophyte Plagiochasma appendiculatum among the Gaddi tribes of Kangra valley, Himachal Pradesh, India. Pharmaceutical biology, 38(5), 353-356. DOI: https://doi.org/10.1076/phbi.38.5.353.5963
- Lang, P., & Murphy, K. (2011). Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams. Hydrobiologia, 679(1), 1-17. https://doi.org/10.1007/s10750-011-0838-6 DOI: https://doi.org/10.1007/s10750-011-0838-6
- Li, C., Zhang, Z., Wang, Z., & Wu, Q. (2020). Effects of environmental factors and heavy metals on the vertical distribution of bryophytes in a sinkhole environment. Plant Biology, 22(5), 822-831. https://doi.org/10.1111/plb.13129 DOI: https://doi.org/10.1111/plb.13129
- Li, H., Qu, Y., Zeng, X., Zhang, H., Ling, C., & Luo, C. (2021). Dynamic response of the vegetation carbon storage in the Sanjiang Plain to changes in land use/cover and climate. Heritage Science, 9(1). https://doi.org/10.1186/s40494-021-00605-1 DOI: https://doi.org/10.1186/s40494-021-00605-1
- Li, Y., Zhang, P., Li, M., Shakoor, N., Adeel, M., Zhou, P., & Rui, Y. (2022). Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. Pest Management Science, 79(1), 21-36. DOI: https://doi.org/10.1002/ps.7218
- Lou, H. X., Li, G. Y., & Wang, F. Q. (2002). A cytotoxic diterpenoid and antifungal phenolic compound from Frullonia muscicola Steph. Journal of Asian Natural Product Research, 4, 87-94. DOI: https://doi.org/10.1080/10286020290027353
- Lu, D., Zhang, Z. H., & Wang, Z. H. (2021). Heavy metal uptake by bryophytes and vascular plants in a manganese carbonate slag field, China. Plant Biology, 24(2), 380-386. https://doi.org/10.1111/plb.13375 DOI: https://doi.org/10.1111/plb.13375
- Lu, Y., Eiríksson, F. F., Þorsteinsdóttir, M., & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes—production, biosynthesis, analysis and applications. Plants, 8(11), 524. https://doi.org/10.3390/plants8110524 DOI: https://doi.org/10.3390/plants8110524
- Lu, Y., Eiríksson, F. F., Þorsteinsdóttir, M., & Simonsen, H. T. (2022). Lipidomic analysis of moss species Bryum pseudotriquetrum and Physcomitrium patens under cold stress. Plant-Environment Interactions, 3(6), 254-263. https://doi.org/10.1002/pei3.10095 DOI: https://doi.org/10.1002/pei3.10095
- Ludwiczuk, A., & Asakawa, Y. (2014). Fingerprinting of secondary metabolites of liverworts: Chemosystematic approach. Journal of AOAC International, 97(5), 1234-1243. https://doi.org/10.5740/jaoacint.sgeludwiczuk DOI: https://doi.org/10.5740/jaoacint.SGELudwiczuk
- Lunic, T., Mandić, M., Pavlović, M., Sabovljevic, A., Sabovljević, M., Nedeljković, B., & Božić, B. (2022). The influence of seasonality on secondary metabolite profiles and neuroprotective activities of moss Hypnum cupressiforme extracts: In vitro and in silico study. Plants, 11(1), 123. https://doi.org/10.3390/plants11010123 DOI: https://doi.org/10.3390/plants11010123
- Lunic, T., Oalđe, M., Mandić, M., Sabovljević, A., Sabovljević, M., Gašić, U., & Nedeljković, B. (2020). Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules, 25(15), 3343. https://doi.org/10.3390/molecules25153343 DOI: https://doi.org/10.3390/molecules25153343
- Maresca, V., Sorbo, S., & Sorbo, S. (2021). Antioxidant and antibacterial properties of extracts and bioactive compounds in bryophytes. Applied Sciences, 11(12), 160. https://doi.org/10.3390/app12010160 DOI: https://doi.org/10.3390/app12010160
- Marko, S. (2001). Bryophytes as a potential source of medicinal compounds. Pregled Rev, 21(1), 17-29.
- McCann, H. C., Nahal, H., Thakur, S., & Guttman, D. S. (2012). Identification of innate immunity elicitors using molecular signatures of natural selection. Proceedings of the National Academy of Sciences, 109(11), 4215-4220. DOI: https://doi.org/10.1073/pnas.1113893109
- Miller, J. W., & Ellsworth, R. (1979). Mastery Learning: The Effects of Time Constraints and Unit Mastery Requirements. Educational Research Quarterly, 4(4), 40-48.
- Motti, R., Palma, A., & Falco, B. (2023). Bryophytes used in folk medicine: An ethnobotanical overview. Horticulturae, 9(2), 137. https://doi.org/10.3390/horticulturae9020137 DOI: https://doi.org/10.3390/horticulturae9020137
- Nath, V., Singh, M., Rawat, A. K. S., & Govindrajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78, 156-158.
- Ohta, Y., Andersen, N. H., & Liu, C.-B. (1977). Sesquiterpene constituents of two liverworts of genus Diplophyllum. Tetrahedron, 33(6), 617-628. ). https://doi:10.1016/0040-4020(77)80301-3 DOI: https://doi.org/10.1016/0040-4020(77)80301-3
- Olofin, T. A., Akande, A. O., & Oyetayo, V. O. (2013). Assessment of the antimicrobial properties of fractions obtained from bryophytes. Journal of Microbiology and Antimicrobials, 5(5), 50-54. DOI: https://doi.org/10.5897/JMA11.055
- Pandey, S. N., & Alam, A. (2020). Bryo-pharmaceuticals. In Advanced Pharmacological Uses of Medicinal Plants and Natural Products (pp. 269-284). https://doi.org/10.4018/978-1-7998-2094-9.ch014 DOI: https://doi.org/10.4018/978-1-7998-2094-9.ch014
- Peters, K., Gorzolka, K., Bruelheide, H., & Neumann, S. (2018). Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution, 8(17), 9105-9117. https://doi.org/10.1002/ece3.4361 DOI: https://doi.org/10.1002/ece3.4361
- Peters, K., Treutler, H., Döll, S., Kindt, A. S., Hankemeier, T., & Neumann, S. (2019). Chemical diversity and classification of secondary metabolites in nine bryophyte species. Metabolites, 10(9), 222. https://doi.org/10.3390/metabo9100222 DOI: https://doi.org/10.3390/metabo9100222
- Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment Development and Sustainability, 7(2), 229-252. https://doi.org/10.1007/s10668-005-7314-2 DOI: https://doi.org/10.1007/s10668-005-7314-2
- Provenzano, F., Sánchez, J., Rao, E., Santonocito, R., Ditta, L., Linares, I., et al. (2019). Water extract of Cryphaea heteromalla (Hedw.) D. Mohr bryophyte as a natural powerful source of biologically active compounds. International Journal of Molecular Sciences, 20(22), 5560. https://doi.org/10.3390/ijms20225560 DOI: https://doi.org/10.3390/ijms20225560
- Qu, J., Xie, C., Guo, H., Yu, W., & Lou, H. (2007). Antifungal dibenzofuran bis (bibenzyl) s from the liverwort Asterella angusta. Phytochemistry, 68(13), 1767-1774. DOI: https://doi.org/10.1016/j.phytochem.2007.04.036
- Rao, G. N., & Chatterjee, R. (2014). Folklore utilization of bryophytes among the tribal regions of north coastal Andhra. International Journal of Environment, 3(4), 101-108. DOI: https://doi.org/10.3126/ije.v3i4.11734
- Reboledo, G., Agorio, A., Vignale, L., Batista-García, R., & León, I. (2020). Botrytis cinerea transcriptome during the infection process of the bryophyte Physcomitrium patens and angiosperms. Journal of Fungi, 7(1), 11. https://doi.org/10.3390/jof7010011 DOI: https://doi.org/10.3390/jof7010011
- Ren, J., Liu, F., Yang, M., Zhu, J., Luo, X., & Liu, R. (2021). The pioneering role of bryophytes in ecological restoration of manganese waste residue areas, southwestern China. Journal of Chemistry, 1-19. https://doi.org/10.1155/2021/9969253 DOI: https://doi.org/10.1155/2021/9969253
- Rol, C., Tam, Y., Yoke, C., Tan, J., Abbasiliasi, S., Kee, W., & Hock, O. (2022). Preliminary assessment of Polytrichum commune extract as an antimicrobial soap ingredient. Journal of Experimental Biology and Agricultural Sciences, 10(4), 894-901. https://doi.org/10.18006/2022.10(4).894.901 DOI: https://doi.org/10.18006/2022.10(4).894.901
- Romani, F., Banić, E., Florent, S. N., Kanazawa, T., Goodger, J. Q., Mentink, R. A., & Moreno, J. E. (2020). Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Current Biology, 30(14), 2815-2828. DOI: https://doi.org/10.1016/j.cub.2020.05.081
- Ryu, C. M., Hu, C. H., Reddy, M. S., & Kloepper, J. W. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160(2), 413-420. DOI: https://doi.org/10.1046/j.1469-8137.2003.00883.x
- Sabovljevic, A., Sakovic, M., Glamolija, J., Ciric, A., Vujicic, M., Pejin, B., & Sabovljevic, M. (2011). Bio activities of extract of some axenically farmed and naturally grown bryophytes. Journal of Medicinal Plant Research, 5, 656-671.
- Sabovljevic, A., Sokovic, M., Sabovljevic, M., & Grubisic, D. (2006). Antimicrobial activity of Bryum argenteum. Fitoterapia, 77(2), 144-145. DOI: https://doi.org/10.1016/j.fitote.2005.11.002
- Sabovljevic, A., Sokovic, M., Glamoclija, J., Ciric, A., Vujicic, M., Pejin, B., & Sabovljevic, M. (2010). Comparison of extract bioactivities of in situ and in vitro grown selected bryophyte species. African Journal of Microbiology Research, 4(9), 808-812.
- Sabovljević, M., Bijelović, A., & Grubišić, D. (2001). Bryophyta, potencijalne lekovite sirovine. Lekovite sirovine, (21), 17-29.
- Sabovljevic, M., Sabovljević, A., Ikram, N., Peramuna, A., Bae, H., & Simonsen, H. (2016). Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genetic Resources, 14(4), 314-327. https://doi.org/10.1017/s1479262116000320 DOI: https://doi.org/10.1017/S1479262116000320
- Savaroglu, F., Ilhan, S., & Filik-Iscen, C. (2011). An evaluation of the antimicrobial activity of some Turkish mosses. Journal of Medicinal Plants Research, 5(14), 3286-3292.
- Savaroglu, F., Iscen, C., Oztopeu-Vaton, F.P., Kadabree, S., Ilhah, S., & Uyar, R. (2011). Determination of antimicrobial and antiproliferative activity of the aquatic moss Fontanilis antipyretica Hedw. Turkish Journal of Botany, 35, 361-369. DOI: https://doi.org/10.3906/biy-0906-46
- Scher, J. M., Speakman, J. B., Zapp, J., & Becker, H. (2004). Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) SF Gray. Phytochemistry, 65(18), 2583-2588. DOI: https://doi.org/10.1016/j.phytochem.2004.05.013
- Secretariat, B. (2014). Sri Lanka’s Fifth National Report to the Convention on Biological Diversity. Ministry of Environment & Renewable Energy.
- Shirsat, R. P. (2008). Ethnomedicinal uses of some common lower plants used by tribals of Melghat region (MS) India. Ethnobotanical Leaflets, 2008(1), 88.
- Singh, M., Rawat, A. K. S., & Govindarajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78(2), 156-158.
- Singh, M., Rawat, A. K., & Govindrajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78, 56-158. DOI: https://doi.org/10.1016/j.fitote.2006.10.008
- Singh, M., Singh, S., Nath, V., Sahu, V., & Singh Rawat, A. K. (2011). Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections. Pharmaceutical Biology, 49(5), 526-530. DOI: https://doi.org/10.3109/13880209.2010.523007
- Singh, S., Gore, S., Gupta, S., & Singh, G. K. (2023). Natural extracts from Marchantia polymorpha against plant pathogens growth inhibition. Environment Conservation Journal, 24(2), 311-319. DOI: https://doi.org/10.36953/ECJ.23562618
- Soudzilovskaia, N. A., v. Bodegom, P. M., & Cornelissen, J. H. C. (2013). Dominant Bryophyte Control Over High-latitude Soil Temperature Fluctuations Predicted by Heat Transfer Traits, Field Moisture Regime and Laws of Thermal Insulation. Functional Ecology, 27(6), 1442-1454. https://doi.org/10.1111/1365-2435.12127 DOI: https://doi.org/10.1111/1365-2435.12127
- Stankovic, J., Sabovljević, A., & Sabovljević, M. S. (2018). Bryophytes and heavy metals: a review. Acta Botanica Croatica, 77(2), 109-118. https://doi.org/10.2478/botcro-2018-0014 DOI: https://doi.org/10.2478/botcro-2018-0014
- Subhisha, S., & Subramoniam, A. (2005). Antifungal activities of a steroid from Pallavicinia lyellii, a liverwort. Indian Journal of Pharmacology, 37(5), 304-308. https://doi.org/10.4103/0253-7613.16854 DOI: https://doi.org/10.4103/0253-7613.16854
- Tooren, B. F. V. (1990). Bryophyte Interactions with Other Plants. Botanical Journal of the Linnean Society, 104, 79-98. DOI: https://doi.org/10.1111/j.1095-8339.1990.tb02212.x
- Tyler, G. (1990). Bryophytes and heavy metals: a literature review. Botanical Journal of the Linnean Society, 104(1-3), 231-253. https://doi.org/10.1111/j.1095-8339.1990.tb02220.x DOI: https://doi.org/10.1111/j.1095-8339.1990.tb02220.x
- Valeeva, L., Dague, A., Hall, M., Tikhonova, A., Sharipova, M., Valentovic, M., & Shakirov, E. (2022). Antimicrobial activities of secondary metabolites from model mosses. Antibiotics, 11(8), 1004. https://doi.org/10.3390/antibiotics11081004 DOI: https://doi.org/10.3390/antibiotics11081004
- Vanderpoorten, A., & Goffinet, B. (2009). Introduction to bryophytes. Cambridge University Press. https://doi.org/10.1017/cbo9780511626838 DOI: https://doi.org/10.1017/CBO9780511626838
- Veljic, M., Đurić, A., Soković, M., Ćirić, A., Glamočlija, J., & Marin, P. D. (2009). Antimicrobial activity of methanol extracts of Fontinalis antipyretica, Hypnum cupressiforme, and Ctenidium molluscum. Archives of Biological Sciences, 61(2), 225-229. DOI: https://doi.org/10.2298/ABS0902225V
- Veljic, M., Tarbuk, M., Marin, P. D., Ćirić, A., Soković, M., & Marin, M. (2008). Antimicrobial activity of methanol extracts of mosses from Serbia. Pharmaceutical Biology, 46(12), 871-875. DOI: https://doi.org/10.1080/13880200802367502
- Vollar, M., Gyovai, A., Szűcs, P., Zupkó, I., Marschall, M., Csupor-Löffler, B., & Csupor, D. (2018). Antiproliferative and antimicrobial activities of selected bryophytes. Molecules, 23(7), 1520. DOI: https://doi.org/10.3390/molecules23071520
- Von Schwartzenberg, K., Schultze, W., & Kassner, H. (2004). The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Reports, 22(10), 780–786. https://doi.org/10.1007/s00299-004-0754-6 DOI: https://doi.org/10.1007/s00299-004-0754-6
- Wang, C., Liu, Y., Li, S., & Han, G. (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology, 167(3), 872-886. https://doi.org/10.1104/pp.114.247403 DOI: https://doi.org/10.1104/pp.114.247403
- Watt, G. (1890). Dictionary of the economic products of India vol. 3. Allen & Co, London. 85 pages.
- Wu, Y., Zhou, Y., Li, X., Gao, S., Cheng, A., & Lou, H. (2018). A bHLH transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum. Plant and Cell Physiology, 59(6), 1187-1199. https://doi.org/10.1093/pcp/pcy053 DOI: https://doi.org/10.1093/pcp/pcy053
- Wyatt, R., Odrzykoski, I., & Stoneburner, A. (1989). High levels of genetic variability in the haploid moss Plagiomnium ciliare. Evolution, 43(5), 1085-1096. https://doi.org/10.1111/j.1558-5646.1989.tb02553.x DOI: https://doi.org/10.1111/j.1558-5646.1989.tb02553.x
- Xie, C., & Lou, H. (2009). Secondary metabolites in bryophytes: an ecological aspect. Chemistry & Biodiversity, 6(3), 303-312. https://doi.org/10.1002/cbdv.200700450 DOI: https://doi.org/10.1002/cbdv.200700450
- Yayintas, O., & Irkin, L. (2018). Bryophytes as hidden treasure. Health Sciences Quarterly, 2(1), 71-83. https://doi.org/10.26900/jsp.2018.07 DOI: https://doi.org/10.26900/jsp.2018.07
- Yongabi, K. A., Novakovie, M., Bukvicki, D., Reeb, C., & Asakawa, Y. (2016). Management of diabetic bacterial foot infections with organic extracts of liverwort Marchantia debilis from Cameroon. Natural Product Communications, 9(11), 1934578X1601100. DOI: https://doi.org/10.1177/1934578X1601100938
- Zhao, M., Cheng, J., Guo, B., Duan, J., & Che, C. (2018). Momilactone and related diterpenoids as potential agricultural chemicals. Journal of Agricultural and Food Chemistry, 66(30), 7859-7872. https://doi.org/10.1021/acs.jafc.8b02602 DOI: https://doi.org/10.1021/acs.jafc.8b02602
- Zhou, Y., Zhang, Y., Liu, H., Zhang, X., Ni, R., Wang, P., & Cheng, A. (2019). Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-2109-z DOI: https://doi.org/10.1186/s12870-019-2109-z
References
Abay, G., Altun, M., Karakoc, O., Gul, F., & Demirtas, I. (2013). Insecticidal activity of fatty acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Combinatorial Chemistry & High Throughput Screening, 10(16), 806-816. DOI: https://doi.org/10.2174/13862073113169990049
Abdel-Shafi, S., Hussein, Y., Sabaa, G. A., & Abdel-Monaem, A. M. (2017). An evaluation of the antibacterial and antiviral activities of some bryophytes. Egyptian Journal of Microbiology, 0(0), 63-86. https://doi.org/10.21608/ejm.2017.893.1020 DOI: https://doi.org/10.21608/ejm.2017.893.1020
Akama, T., Shida, Y., Sugaya, T., Ishida, H., Gomi, K., & Kasai, M. (1996). Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer. Journal of Medicinal Chemistry, 39(18), 3461-3469. https://doi.org/10.1021/jm950938g DOI: https://doi.org/10.1021/jm950938g
Alam, A., Tripathi, A., Vats, S., Behera, K., & Sharma, V. (2011). In vitro antifungal efficacies of aqueous extract of Dumortiera hirsuta (Swaegr.) Nees against sporulation and growth of postharvest phytopathogenic fungi. Archive for Bryology, 103, 1-9.
Allen, D. E., & Hatfield, G. (2004). Medicinal plants in folk tradition: An ethnobotany of Britain & Ireland. Timber Press.
Anchang, K. Y., & Simonsen, H. T. (2019). Developments and perspectives in bryophyte biotechnology in Sub-Saharan Africa. In Biotechnology and Bioengineering. IntechOpen. https://doi.org/10.5772/intechopen.81692 DOI: https://doi.org/10.5772/intechopen.81692
Ando, H., & Matsuo, A. (1984). Applied bryology. Advances in Bryology, 2, 133-224.
Asakawa, Y. (1982). Chemical constituents of the Hepaticae. In W. Herz, H. Grisebach, & G. W. Kirby (Eds.), Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. https://doi.org/10.1007/978-3-7091-8677-0_1 DOI: https://doi.org/10.1007/978-3-7091-8677-0
Asakawa, Y., & Ludwiczuk, A. (2013). Bryophytes: Liverworts, mosses, and hornworts: Extraction and isolation procedures. In U. Roessner & D. Dias (Eds.), Metabolomics Tools for Natural Product Discovery (Methods in Molecular Biology, vol. 1055, pp. 1-20). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-577-4_1 DOI: https://doi.org/10.1007/978-1-62703-577-4_1
Asakawa, Y., & Ludwiczuk, A. (2017). Chemical constituents of bryophytes: Structures and biological activity. Journal of Natural Products, 81(3), 641-660. https://doi.org/10.1021/acs.jnatprod.6b01046 DOI: https://doi.org/10.1021/acs.jnatprod.6b01046
Asakawa, Y., Nii, K., & Higuchi, M. (2015). Identification of sesquiterpene lactones in the Bryophyta (mosses) Takakia: Takakia species are closely related chemically to the Marchantiophyta (liverworts). Natural Product Communications, 10(1), 1934578X1501000. DOI: https://doi.org/10.1177/1934578X1501000104
Aslanbaba, B., Yilmaz, S., Yayintas, O. T., Ozyurt, D., & Ozturk, B. D. (2017). Total phenol content and antioxidant activity of mosses from Yenice Forest (Ida Mountain). Journal of Scientific Perspectives, 1(1), 1-12. https://doi.org/10.26900/jsp.2017.0 DOI: https://doi.org/10.26900/jsp.2017.0
Bailly, C., & Vergoten, G. (2023). The plagiochilins from liverworts Plagiochila: Binding to α-tubulin and drug design perspectives. https://doi.org/10.20944/preprints202304.0566.v1 DOI: https://doi.org/10.20944/preprints202304.0566.v1
Banerjee, R. D. (2000). Antimicrobial activities of bryophytes: A review. In V. Nath & A. K. Asthana (Eds.), Perspectives in Indian Bryology (pp. 55-74). Dehradun: Bishen Singh Mahendra Pal Singh.
Banerjee, S. (2019). Assessment of diversity and traditional uses of bryophytes along some hill roads in a biodiversity hotspot region of India-a case study of Mizoram. International Journal of Natural Resource Ecology and Management, 4(3), 73. https://doi.org/10.11648/j.ijnrem.20190403.12 DOI: https://doi.org/10.11648/j.ijnrem.20190403.12
Beike, A., Decker, E., Frank, W., Lang, D., Scheebaum, M., Zimmer, A. & Reski, R. (2010). Applied bryology - bryotechnology. Bryophyte Diversity and Evolution, 31(1), 22. https://doi.org/10.11646/bde.31.1.7 DOI: https://doi.org/10.11646/bde.31.1.7
Benek, A., Canli, K., & Altuner, E. (2022). Traditional medicinal uses of mosses. Anatolian Bryology, 8(1), 57-65. https://doi.org/10.26672/anatolianbryology.1061190 DOI: https://doi.org/10.26672/anatolianbryology.1061190
Binwal, N., Joshi, P., Tewari, S. D., Bisht, S., Kandpal, M., Jalal, R., & Kohli, N. (2023). Antifungal activity of leafy liverworts against selected plant pathogenic fungi. International Journal of Ecology and Environmental Sciences, 49(4), 375-380. DOI: https://doi.org/10.55863/ijees.2023.2700
Bland, J. H. (1971). Forests of Lilliput: The realm of mosses and lichens. Prentice-Hall.
Blazquez, M., Nelson, D., & Weijers, D. (2020). Evolution of plant hormone response pathways. Annual Review of Plant Biology, 71(1), 327-353. https://doi.org/10.1146/annurev-arplant-050718-100309 DOI: https://doi.org/10.1146/annurev-arplant-050718-100309
Bodade, R. G., Borkar, P. S., Saiful, A. M., & Khobragade, C. N. (2008). In vitro screening of bryophytes for antimicrobial activity.
Bucar, M., Segota, V., Rimac, A., Koletic, N., Maric, T., & Alegro, A. (2022). Green Christmas: Bryophytes as ornamentals in Croatian traditional nativity scenes. Journal of Ethnobiology and Ethnomedicine, 18(1). https://doi.org/10.1186/s13002-022-00516-w DOI: https://doi.org/10.1186/s13002-022-00516-w
Carriqui, M., Roig-Oliver, M., Brodribb, T. J., Coopman, R. E., Gill, W., Mark, K., & Flexas, J. (2019). Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytologist, 222(3), 1256-1270. DOI: https://doi.org/10.1111/nph.15675
Chandra, S., Chandra, D., Barh, A., Pandey, R., & Sharma, I. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of Traditional and Complementary Medicine, 7(1), 94-98. https://doi.org/10.1016/j.jtcme.2016.01.007 DOI: https://doi.org/10.1016/j.jtcme.2016.01.007
Chen, Y., Moles, A., Bu, Z., Zhang, M., Wang, Z., & Hong-yan, Z. (2021). Induced defense and its cost in two bryophyte species. American Journal of Botany, 108(5), 777-787. https://doi.org/10.1002/ajb2.1654 DOI: https://doi.org/10.1002/ajb2.1654
Cheng, A. L., Sun, X., Wu, W., & Lou, H. (2001). The inhibitory effect of a monocyclic bisbibenzylricardin D on the biofilms of Candida albicans. Biological and Pharmaceutical Bulletin, 24, 1417-1421. DOI: https://doi.org/10.1248/bpb.32.1417
Cianciullo, P., Cimmino, F., Maresca, V., Sorbo, S., Bontempo, P., & Basile, A. (2022). Antitumor activities from secondary metabolites and their derivatives in bryophytes: A brief review. Applied Biosciences, 1(1), 73-94. https://doi.org/10.3390/applbiosci1010005 DOI: https://doi.org/10.3390/applbiosci1010005
Commisso, M., Guarino, F., Marchi, L., Muto, A., Piro, A., & Degola, F. (2021). Bryo-activities: A review on how bryophytes are contributing to the arsenal of natural bioactive compounds against fungi. Plants, 10(2), 203. DOI: https://doi.org/10.3390/plants10020203
Cox, C. J., Goffinet, B., Wickett, N. J., Boles, S. B., & Shaw, A. J. (2010). Moss diversity: A molecular phylogenetic analysis of genera. Phytotaxa, 9(1), 175-195. DOI: https://doi.org/10.11646/phytotaxa.9.1.10
Dayan, F., & Romagni, J. (2001). Lichens: A potential source of pesticides. Pesticide Outlook, 12, 229-232. https://doi.org/10.1039/B110543B DOI: https://doi.org/10.1039/b110543b
Demirbag, M., Yıldırım, V., Batan, N., Yılmaz, P. D., Emre, İ., & Alataş, M. (2022). The biochemical properties of some species of Dicranum Hedw. Anatolian Bryology, 8(2), 140-148. https://doi.org/10.26672/anatolianbryology.1205930 DOI: https://doi.org/10.26672/anatolianbryology.1205930
Deora, G. S., & Guhil, N. (2014). Antifungal potential of Bryum cellulare against some common diseases of maize. International Journal of Research and Applied Natural and Social Sciences, 2, 21-28.
Deora, G. S., & Guhil, N. (2015). Phytochemical analysis and antifungal activity of moss Bryum cellulare against some phytopathogenic fungi. International Journal of Pharmaceutical Sciences and Research, 6(2), 688.
Deora, G. S., Deepti, S., & Gunjan, V. (2010). Antifungal potential of Philonotis revoluta - a moss against certain phytopathogenic fungi. Journal of Pure and Applied Microbiology, 4(1), 425-428.
Ding, H. (1982). Medicinal spore-bearing plants of China. Shanghai Science and Technology Press.
Drobnik, J., & Stebel, A. (2021). Four centuries of medicinal mosses and liverworts in European ethnopharmacy and scientific pharmacy: A review. Plants, 10(7), 1296. https://doi.org/10.3390/plants10071296 DOI: https://doi.org/10.3390/plants10071296
Drobnik, J., & Stebel, A. (2014). Medicinal mosses in pre-Linnaean bryophyte floras of Central Europe: An example from the natural history of Poland. Journal of Ethnopharmacology, 153(3), 682-685. DOI: https://doi.org/10.1016/j.jep.2014.03.025
Dziwak, M., Wróblewska, K., Szumny, A., & Galek, R. (2022). Modern use of bryophytes as a source of secondary metabolites. Agronomy, 12(6), 1456. DOI: https://doi.org/10.3390/agronomy12061456
Elumeeva, T. G., Soudzilovskaia, N. A., During, H. J., & Cornelissen, J. H. C. (2011). The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. Journal of Vegetation Science, 22(1), 152-164. https://doi.org/10.1111/j.1654-1103.2010.01237.x DOI: https://doi.org/10.1111/j.1654-1103.2010.01237.x
Fernandes, A., Mazzei, J., Alencar, A., Evangelista, H., & Felzenszwalb, I. (2011). Effects of Sanionia uncinata extracts in protecting against and inducing DNA cleavage by reactive oxygen species. Redox Report, 16(5), 201-207. https://doi.org/10.1179/1351000211y.0000000011 DOI: https://doi.org/10.1179/1351000211Y.0000000011
Flowers, S. (1957). Ethnobryology of the osuite Indians of Utah. The Bryologist, 60(1), 11-14. DOI: https://doi.org/10.2307/3240044
Frahm, J. P. (2004). Recent developments of commercial products from bryophytes. The Bryologist, 107, 277-283. DOI: https://doi.org/10.1639/0007-2745(2004)107[0277:RDOCPF]2.0.CO;2
Franquemont, C., Plowman, T., Franquemont, E., King, S. R., Niezgoda, C., Davis, W., & Sperling, C. R. (1990). The ethnobotany of Chinchero, an Andean community in southern Peru. DOI: https://doi.org/10.5962/bhl.title.2559
Gahtori, D., & Chaturvedi, P. (2011). Antifungal and antibacterial potential of methanol and chloroform extracts of Marchantia polymorpha L. Archives of Phytopathology and Plant Protection, 44(8), 726–731. DOI: https://doi.org/10.1080/03235408.2010.516083
Glime, J. M. (2007). Bryophyte ecology. In Physiological Ecology (Vol. 1). Michigan Technological University, International Association of Bryologists. Retrieved from http://www.bryoecol.mtu.edu
Goffinet, B., & Shaw, A. J. (2008). Bryophyte Biology. Cambridge: Cambridge University Press, pp. 479. DOI: https://doi.org/10.1017/CBO9780511754807
Gundale, M., DeLuca, T., & Nordin, A. (2011). Bryophytes attenuate anthropogenic nitrogen inputs in boreal forests. Global Change Biology, 17(8), 2743-2753. https://doi.org/10.1111/j.1365-2486.2011.02407.x DOI: https://doi.org/10.1111/j.1365-2486.2011.02407.x
Gupta, A., Shah, S., Saiyed, G., Pathan, N., Dudha, H., Das, S., & Palekar, S. (2018). Exploration of flavonoids from Physcomitrella patens for determining its antimicrobial potential. International Journal of Scientific Research in Biological Sciences, 5(4), 76-81. https://doi.org/10.26438/ijsrbs/v5i4.7681 DOI: https://doi.org/10.26438/ijsrbs/v5i4.7681
He, C., Z, Z., Wang, Z., Shi, K., Wu, Q., & Wang, D. (2021). Bioindication of heavy metals using bryophyte communities in the Songtao manganese carbonate ore region, China. https://doi.org/10.21203/rs.3.rs-202426/v1 DOI: https://doi.org/10.21203/rs.3.rs-202426/v1
Hernandez-Rodriguez, E., & Delgadillo-Moya, C. (2020). The ethnobotany of bryophytes in Mexico. Botanical Sciences, 99(1), 13-27. https://doi.org/10.17129/botsci.2685 DOI: https://doi.org/10.17129/botsci.2685
Hong, M., Kim, T. H., Sowndhararajan, K., & Kim, S. (2021). Chemical composition of common liverwort (Marchantia polymorpha L.) and Racomitrium moss (Racomitrium canescens (Hedw.) Brid) in Korea. Weed & Turfgrass Science, 10(4), 365-374. DOI: https://doi.org/10.3390/plants10102075
Joshi, S., Bhardwaj, P., & Alam, A. (2022). Bryophytes as a safeguard of fruits from postharvest fungal diseases: A review. Natural Resources for Human Health, 3(2), 327-334. https://doi.org/10.53365/nrfhh/145476 DOI: https://doi.org/10.53365/nrfhh/145476
Kirisanth, A., Nafas, M. N. M., Dissanayake, R. K., & Wijayabandara, J. (2020). Antimicrobial and alpha-amylase inhibitory activities of organic extracts of selected Sri Lankan bryophytes. Evidence-Based Complementary and Alternative Medicine, 2020, 1-6. https://doi.org/10.1155/2020/3479851 DOI: https://doi.org/10.1155/2020/3479851
Klavina, L., Spriņģe, G., Nikolajeva, V., Martsinkevich, I., Nakurte, I., Dzabijeva, D., & Steinberga, I. (2015). Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules, 20(9), 17221-17243. DOI: https://doi.org/10.3390/molecules200917221
Kumar, K., Singh, K. K., Asthana, A. K., & Nath, V. (2000). Ethnotherapeutics of bryophyte Plagiochasma appendiculatum among the Gaddi tribes of Kangra valley, Himachal Pradesh, India. Pharmaceutical biology, 38(5), 353-356. DOI: https://doi.org/10.1076/phbi.38.5.353.5963
Lang, P., & Murphy, K. (2011). Environmental drivers, life strategies and bioindicator capacity of bryophyte communities in high-latitude headwater streams. Hydrobiologia, 679(1), 1-17. https://doi.org/10.1007/s10750-011-0838-6 DOI: https://doi.org/10.1007/s10750-011-0838-6
Li, C., Zhang, Z., Wang, Z., & Wu, Q. (2020). Effects of environmental factors and heavy metals on the vertical distribution of bryophytes in a sinkhole environment. Plant Biology, 22(5), 822-831. https://doi.org/10.1111/plb.13129 DOI: https://doi.org/10.1111/plb.13129
Li, H., Qu, Y., Zeng, X., Zhang, H., Ling, C., & Luo, C. (2021). Dynamic response of the vegetation carbon storage in the Sanjiang Plain to changes in land use/cover and climate. Heritage Science, 9(1). https://doi.org/10.1186/s40494-021-00605-1 DOI: https://doi.org/10.1186/s40494-021-00605-1
Li, Y., Zhang, P., Li, M., Shakoor, N., Adeel, M., Zhou, P., & Rui, Y. (2022). Application and mechanisms of metal-based nanoparticles in the control of bacterial and fungal crop diseases. Pest Management Science, 79(1), 21-36. DOI: https://doi.org/10.1002/ps.7218
Lou, H. X., Li, G. Y., & Wang, F. Q. (2002). A cytotoxic diterpenoid and antifungal phenolic compound from Frullonia muscicola Steph. Journal of Asian Natural Product Research, 4, 87-94. DOI: https://doi.org/10.1080/10286020290027353
Lu, D., Zhang, Z. H., & Wang, Z. H. (2021). Heavy metal uptake by bryophytes and vascular plants in a manganese carbonate slag field, China. Plant Biology, 24(2), 380-386. https://doi.org/10.1111/plb.13375 DOI: https://doi.org/10.1111/plb.13375
Lu, Y., Eiríksson, F. F., Þorsteinsdóttir, M., & Simonsen, H. T. (2019). Valuable fatty acids in bryophytes—production, biosynthesis, analysis and applications. Plants, 8(11), 524. https://doi.org/10.3390/plants8110524 DOI: https://doi.org/10.3390/plants8110524
Lu, Y., Eiríksson, F. F., Þorsteinsdóttir, M., & Simonsen, H. T. (2022). Lipidomic analysis of moss species Bryum pseudotriquetrum and Physcomitrium patens under cold stress. Plant-Environment Interactions, 3(6), 254-263. https://doi.org/10.1002/pei3.10095 DOI: https://doi.org/10.1002/pei3.10095
Ludwiczuk, A., & Asakawa, Y. (2014). Fingerprinting of secondary metabolites of liverworts: Chemosystematic approach. Journal of AOAC International, 97(5), 1234-1243. https://doi.org/10.5740/jaoacint.sgeludwiczuk DOI: https://doi.org/10.5740/jaoacint.SGELudwiczuk
Lunic, T., Mandić, M., Pavlović, M., Sabovljevic, A., Sabovljević, M., Nedeljković, B., & Božić, B. (2022). The influence of seasonality on secondary metabolite profiles and neuroprotective activities of moss Hypnum cupressiforme extracts: In vitro and in silico study. Plants, 11(1), 123. https://doi.org/10.3390/plants11010123 DOI: https://doi.org/10.3390/plants11010123
Lunic, T., Oalđe, M., Mandić, M., Sabovljević, A., Sabovljević, M., Gašić, U., & Nedeljković, B. (2020). Extracts characterization and in vitro evaluation of potential immunomodulatory activities of the moss Hypnum cupressiforme Hedw. Molecules, 25(15), 3343. https://doi.org/10.3390/molecules25153343 DOI: https://doi.org/10.3390/molecules25153343
Maresca, V., Sorbo, S., & Sorbo, S. (2021). Antioxidant and antibacterial properties of extracts and bioactive compounds in bryophytes. Applied Sciences, 11(12), 160. https://doi.org/10.3390/app12010160 DOI: https://doi.org/10.3390/app12010160
Marko, S. (2001). Bryophytes as a potential source of medicinal compounds. Pregled Rev, 21(1), 17-29.
McCann, H. C., Nahal, H., Thakur, S., & Guttman, D. S. (2012). Identification of innate immunity elicitors using molecular signatures of natural selection. Proceedings of the National Academy of Sciences, 109(11), 4215-4220. DOI: https://doi.org/10.1073/pnas.1113893109
Miller, J. W., & Ellsworth, R. (1979). Mastery Learning: The Effects of Time Constraints and Unit Mastery Requirements. Educational Research Quarterly, 4(4), 40-48.
Motti, R., Palma, A., & Falco, B. (2023). Bryophytes used in folk medicine: An ethnobotanical overview. Horticulturae, 9(2), 137. https://doi.org/10.3390/horticulturae9020137 DOI: https://doi.org/10.3390/horticulturae9020137
Nath, V., Singh, M., Rawat, A. K. S., & Govindrajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78, 156-158.
Ohta, Y., Andersen, N. H., & Liu, C.-B. (1977). Sesquiterpene constituents of two liverworts of genus Diplophyllum. Tetrahedron, 33(6), 617-628. ). https://doi:10.1016/0040-4020(77)80301-3 DOI: https://doi.org/10.1016/0040-4020(77)80301-3
Olofin, T. A., Akande, A. O., & Oyetayo, V. O. (2013). Assessment of the antimicrobial properties of fractions obtained from bryophytes. Journal of Microbiology and Antimicrobials, 5(5), 50-54. DOI: https://doi.org/10.5897/JMA11.055
Pandey, S. N., & Alam, A. (2020). Bryo-pharmaceuticals. In Advanced Pharmacological Uses of Medicinal Plants and Natural Products (pp. 269-284). https://doi.org/10.4018/978-1-7998-2094-9.ch014 DOI: https://doi.org/10.4018/978-1-7998-2094-9.ch014
Peters, K., Gorzolka, K., Bruelheide, H., & Neumann, S. (2018). Seasonal variation of secondary metabolites in nine different bryophytes. Ecology and Evolution, 8(17), 9105-9117. https://doi.org/10.1002/ece3.4361 DOI: https://doi.org/10.1002/ece3.4361
Peters, K., Treutler, H., Döll, S., Kindt, A. S., Hankemeier, T., & Neumann, S. (2019). Chemical diversity and classification of secondary metabolites in nine bryophyte species. Metabolites, 10(9), 222. https://doi.org/10.3390/metabo9100222 DOI: https://doi.org/10.3390/metabo9100222
Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environment Development and Sustainability, 7(2), 229-252. https://doi.org/10.1007/s10668-005-7314-2 DOI: https://doi.org/10.1007/s10668-005-7314-2
Provenzano, F., Sánchez, J., Rao, E., Santonocito, R., Ditta, L., Linares, I., et al. (2019). Water extract of Cryphaea heteromalla (Hedw.) D. Mohr bryophyte as a natural powerful source of biologically active compounds. International Journal of Molecular Sciences, 20(22), 5560. https://doi.org/10.3390/ijms20225560 DOI: https://doi.org/10.3390/ijms20225560
Qu, J., Xie, C., Guo, H., Yu, W., & Lou, H. (2007). Antifungal dibenzofuran bis (bibenzyl) s from the liverwort Asterella angusta. Phytochemistry, 68(13), 1767-1774. DOI: https://doi.org/10.1016/j.phytochem.2007.04.036
Rao, G. N., & Chatterjee, R. (2014). Folklore utilization of bryophytes among the tribal regions of north coastal Andhra. International Journal of Environment, 3(4), 101-108. DOI: https://doi.org/10.3126/ije.v3i4.11734
Reboledo, G., Agorio, A., Vignale, L., Batista-García, R., & León, I. (2020). Botrytis cinerea transcriptome during the infection process of the bryophyte Physcomitrium patens and angiosperms. Journal of Fungi, 7(1), 11. https://doi.org/10.3390/jof7010011 DOI: https://doi.org/10.3390/jof7010011
Ren, J., Liu, F., Yang, M., Zhu, J., Luo, X., & Liu, R. (2021). The pioneering role of bryophytes in ecological restoration of manganese waste residue areas, southwestern China. Journal of Chemistry, 1-19. https://doi.org/10.1155/2021/9969253 DOI: https://doi.org/10.1155/2021/9969253
Rol, C., Tam, Y., Yoke, C., Tan, J., Abbasiliasi, S., Kee, W., & Hock, O. (2022). Preliminary assessment of Polytrichum commune extract as an antimicrobial soap ingredient. Journal of Experimental Biology and Agricultural Sciences, 10(4), 894-901. https://doi.org/10.18006/2022.10(4).894.901 DOI: https://doi.org/10.18006/2022.10(4).894.901
Romani, F., Banić, E., Florent, S. N., Kanazawa, T., Goodger, J. Q., Mentink, R. A., & Moreno, J. E. (2020). Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Current Biology, 30(14), 2815-2828. DOI: https://doi.org/10.1016/j.cub.2020.05.081
Ryu, C. M., Hu, C. H., Reddy, M. S., & Kloepper, J. W. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160(2), 413-420. DOI: https://doi.org/10.1046/j.1469-8137.2003.00883.x
Sabovljevic, A., Sakovic, M., Glamolija, J., Ciric, A., Vujicic, M., Pejin, B., & Sabovljevic, M. (2011). Bio activities of extract of some axenically farmed and naturally grown bryophytes. Journal of Medicinal Plant Research, 5, 656-671.
Sabovljevic, A., Sokovic, M., Sabovljevic, M., & Grubisic, D. (2006). Antimicrobial activity of Bryum argenteum. Fitoterapia, 77(2), 144-145. DOI: https://doi.org/10.1016/j.fitote.2005.11.002
Sabovljevic, A., Sokovic, M., Glamoclija, J., Ciric, A., Vujicic, M., Pejin, B., & Sabovljevic, M. (2010). Comparison of extract bioactivities of in situ and in vitro grown selected bryophyte species. African Journal of Microbiology Research, 4(9), 808-812.
Sabovljević, M., Bijelović, A., & Grubišić, D. (2001). Bryophyta, potencijalne lekovite sirovine. Lekovite sirovine, (21), 17-29.
Sabovljevic, M., Sabovljević, A., Ikram, N., Peramuna, A., Bae, H., & Simonsen, H. (2016). Bryophytes – an emerging source for herbal remedies and chemical production. Plant Genetic Resources, 14(4), 314-327. https://doi.org/10.1017/s1479262116000320 DOI: https://doi.org/10.1017/S1479262116000320
Savaroglu, F., Ilhan, S., & Filik-Iscen, C. (2011). An evaluation of the antimicrobial activity of some Turkish mosses. Journal of Medicinal Plants Research, 5(14), 3286-3292.
Savaroglu, F., Iscen, C., Oztopeu-Vaton, F.P., Kadabree, S., Ilhah, S., & Uyar, R. (2011). Determination of antimicrobial and antiproliferative activity of the aquatic moss Fontanilis antipyretica Hedw. Turkish Journal of Botany, 35, 361-369. DOI: https://doi.org/10.3906/biy-0906-46
Scher, J. M., Speakman, J. B., Zapp, J., & Becker, H. (2004). Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) SF Gray. Phytochemistry, 65(18), 2583-2588. DOI: https://doi.org/10.1016/j.phytochem.2004.05.013
Secretariat, B. (2014). Sri Lanka’s Fifth National Report to the Convention on Biological Diversity. Ministry of Environment & Renewable Energy.
Shirsat, R. P. (2008). Ethnomedicinal uses of some common lower plants used by tribals of Melghat region (MS) India. Ethnobotanical Leaflets, 2008(1), 88.
Singh, M., Rawat, A. K. S., & Govindarajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78(2), 156-158.
Singh, M., Rawat, A. K., & Govindrajan, R. (2007). Antimicrobial activity of some Indian mosses. Fitoterapia, 78, 56-158. DOI: https://doi.org/10.1016/j.fitote.2006.10.008
Singh, M., Singh, S., Nath, V., Sahu, V., & Singh Rawat, A. K. (2011). Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections. Pharmaceutical Biology, 49(5), 526-530. DOI: https://doi.org/10.3109/13880209.2010.523007
Singh, S., Gore, S., Gupta, S., & Singh, G. K. (2023). Natural extracts from Marchantia polymorpha against plant pathogens growth inhibition. Environment Conservation Journal, 24(2), 311-319. DOI: https://doi.org/10.36953/ECJ.23562618
Soudzilovskaia, N. A., v. Bodegom, P. M., & Cornelissen, J. H. C. (2013). Dominant Bryophyte Control Over High-latitude Soil Temperature Fluctuations Predicted by Heat Transfer Traits, Field Moisture Regime and Laws of Thermal Insulation. Functional Ecology, 27(6), 1442-1454. https://doi.org/10.1111/1365-2435.12127 DOI: https://doi.org/10.1111/1365-2435.12127
Stankovic, J., Sabovljević, A., & Sabovljević, M. S. (2018). Bryophytes and heavy metals: a review. Acta Botanica Croatica, 77(2), 109-118. https://doi.org/10.2478/botcro-2018-0014 DOI: https://doi.org/10.2478/botcro-2018-0014
Subhisha, S., & Subramoniam, A. (2005). Antifungal activities of a steroid from Pallavicinia lyellii, a liverwort. Indian Journal of Pharmacology, 37(5), 304-308. https://doi.org/10.4103/0253-7613.16854 DOI: https://doi.org/10.4103/0253-7613.16854
Tooren, B. F. V. (1990). Bryophyte Interactions with Other Plants. Botanical Journal of the Linnean Society, 104, 79-98. DOI: https://doi.org/10.1111/j.1095-8339.1990.tb02212.x
Tyler, G. (1990). Bryophytes and heavy metals: a literature review. Botanical Journal of the Linnean Society, 104(1-3), 231-253. https://doi.org/10.1111/j.1095-8339.1990.tb02220.x DOI: https://doi.org/10.1111/j.1095-8339.1990.tb02220.x
Valeeva, L., Dague, A., Hall, M., Tikhonova, A., Sharipova, M., Valentovic, M., & Shakirov, E. (2022). Antimicrobial activities of secondary metabolites from model mosses. Antibiotics, 11(8), 1004. https://doi.org/10.3390/antibiotics11081004 DOI: https://doi.org/10.3390/antibiotics11081004
Vanderpoorten, A., & Goffinet, B. (2009). Introduction to bryophytes. Cambridge University Press. https://doi.org/10.1017/cbo9780511626838 DOI: https://doi.org/10.1017/CBO9780511626838
Veljic, M., Đurić, A., Soković, M., Ćirić, A., Glamočlija, J., & Marin, P. D. (2009). Antimicrobial activity of methanol extracts of Fontinalis antipyretica, Hypnum cupressiforme, and Ctenidium molluscum. Archives of Biological Sciences, 61(2), 225-229. DOI: https://doi.org/10.2298/ABS0902225V
Veljic, M., Tarbuk, M., Marin, P. D., Ćirić, A., Soković, M., & Marin, M. (2008). Antimicrobial activity of methanol extracts of mosses from Serbia. Pharmaceutical Biology, 46(12), 871-875. DOI: https://doi.org/10.1080/13880200802367502
Vollar, M., Gyovai, A., Szűcs, P., Zupkó, I., Marschall, M., Csupor-Löffler, B., & Csupor, D. (2018). Antiproliferative and antimicrobial activities of selected bryophytes. Molecules, 23(7), 1520. DOI: https://doi.org/10.3390/molecules23071520
Von Schwartzenberg, K., Schultze, W., & Kassner, H. (2004). The moss Physcomitrella patens releases a tetracyclic diterpene. Plant Cell Reports, 22(10), 780–786. https://doi.org/10.1007/s00299-004-0754-6 DOI: https://doi.org/10.1007/s00299-004-0754-6
Wang, C., Liu, Y., Li, S., & Han, G. (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiology, 167(3), 872-886. https://doi.org/10.1104/pp.114.247403 DOI: https://doi.org/10.1104/pp.114.247403
Watt, G. (1890). Dictionary of the economic products of India vol. 3. Allen & Co, London. 85 pages.
Wu, Y., Zhou, Y., Li, X., Gao, S., Cheng, A., & Lou, H. (2018). A bHLH transcription factor regulates bisbibenzyl biosynthesis in the liverwort Plagiochasma appendiculatum. Plant and Cell Physiology, 59(6), 1187-1199. https://doi.org/10.1093/pcp/pcy053 DOI: https://doi.org/10.1093/pcp/pcy053
Wyatt, R., Odrzykoski, I., & Stoneburner, A. (1989). High levels of genetic variability in the haploid moss Plagiomnium ciliare. Evolution, 43(5), 1085-1096. https://doi.org/10.1111/j.1558-5646.1989.tb02553.x DOI: https://doi.org/10.1111/j.1558-5646.1989.tb02553.x
Xie, C., & Lou, H. (2009). Secondary metabolites in bryophytes: an ecological aspect. Chemistry & Biodiversity, 6(3), 303-312. https://doi.org/10.1002/cbdv.200700450 DOI: https://doi.org/10.1002/cbdv.200700450
Yayintas, O., & Irkin, L. (2018). Bryophytes as hidden treasure. Health Sciences Quarterly, 2(1), 71-83. https://doi.org/10.26900/jsp.2018.07 DOI: https://doi.org/10.26900/jsp.2018.07
Yongabi, K. A., Novakovie, M., Bukvicki, D., Reeb, C., & Asakawa, Y. (2016). Management of diabetic bacterial foot infections with organic extracts of liverwort Marchantia debilis from Cameroon. Natural Product Communications, 9(11), 1934578X1601100. DOI: https://doi.org/10.1177/1934578X1601100938
Zhao, M., Cheng, J., Guo, B., Duan, J., & Che, C. (2018). Momilactone and related diterpenoids as potential agricultural chemicals. Journal of Agricultural and Food Chemistry, 66(30), 7859-7872. https://doi.org/10.1021/acs.jafc.8b02602 DOI: https://doi.org/10.1021/acs.jafc.8b02602
Zhou, Y., Zhang, Y., Liu, H., Zhang, X., Ni, R., Wang, P., & Cheng, A. (2019). Functional characterization of a liverworts bHLH transcription factor involved in the regulation of bisbibenzyls and flavonoids biosynthesis. BMC Plant Biology, 19(1). https://doi.org/10.1186/s12870-019-2109-z DOI: https://doi.org/10.1186/s12870-019-2109-z