Main Article Content

Abstract

Isolating high-quality genomic DNA from Abelmoschus esculentus (okra) is very hard because it contains a lot of acidic polysaccharides (mucilage) and polyphenols, which can make DNA extraction harder. This study selected twenty different genotypes of okra, carefully harvested healthy juvenile leaves, and washed them with distilled water to minimize contamination. A novel, cost-effective, rapid, and simplified method for DNA extraction was standardized, addressing the specific challenges posed by okra's biochemical composition in comparison to the conventional methods. The modified protocol yielded 20–30% more DNA compared to conventional methods, resulting in superior quality and purity.  The DNA isolated using this method was sufficiently pure for approximately 275-300 PCR reactions, enabling accurate downstream applications such as genetic diversity analysis. This optimized protocol represents a significant advancement in genomic DNA isolation from okra, providing a reliable and efficient alternative to conventional approaches.

Keywords

Abelmoschus esculentus CTAB Genomic DNA Modified technique

Article Details

How to Cite
Sarthi, Johar, V., Singh, N., Alaklabi, A., & Khan, S. (2024). Rapid and efficient isolation of genomic DNA from Okra (Abelmoschus esculentus L.): A streamlined alternative to conventional methods. Environment Conservation Journal, 25(4), 1172–1179. https://doi.org/10.36953/ECJ.27652839

References

  1. Adiger, S., & Sridevi, O. (2014). Isolation of DNA from mucilage-rich okra (Abelmoschus esculentus L.) for PCR analysis. Trends Biosci, 7(16), 2306-2309.
  2. Ahmad, I., Rana, R. M., Hassan, M. U., Khan, M. A., & Sajjad, M. (2022). Association mapping for abiotic stress tolerance using heat-and drought-related syntenic markers in okra. Molecular Biology Reports, 49(12), 11409-11419. DOI: https://doi.org/10.1007/s11033-022-07827-x
  3. Chaudhari, S., Talavia, B. & Meena, A. (2023). Effect of saline irrigation water on biochemical parameters of okra (Abelmoschus esculentus L.) varieties. The Pharma Innovation Journal; 12(3): 3629-3632.
  4. Dhankhar, S.K. & A. V. V., Koundinya. (2020). Accelerated Breeding in Okra. In book: Accelerated Plant Breeding, Volume 2, Vegetable Crops. Pp.6-12. DOI: https://doi.org/10.1007/978-3-030-47298-6_12
  5. Doyle & Doyle. J. (1991). DNA protocols for plants. In Molecular techniques in taxonomy, 283-293. DOI: https://doi.org/10.1007/978-3-642-83962-7_18
  6. Doyle, J.J. and Doyle, J.L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19, 11-15.
  7. Jeyaseelan, T. C., Jeyaseelan, E. C., De Costa, D. M., & Shaw, M. W. (2019). Selecting and optimizing a reliable DNA extraction method for isolating viral DNA in okra (Abelmoschus esculentus). Vingnanam Journal of Science, 14(1), pp.7–14. DOI: https://doi.org/10.4038/vingnanam.v14i1.4140
  8. Kabir, M. R., Ahmed, S., & Akhond, M. A. Y. (2016). Organogenesis in okra (Abelmoschus esculentus L. Moench.): a plant recalcitrant to tissue culture. Bangladesh Journal of Agricultural Research. 41(3):521-528. DOI: https://doi.org/10.3329/bjar.v41i3.29723
  9. Kalkan, E., & Maskan, M. (2023). Mucilage in okra: extraction, modeling, optimization, and application. Journal of Food Measurement and Characterization, 17(5), 4812-4822. DOI: https://doi.org/10.1007/s11694-023-01979-5
  10. Kidane, L., Kalousova, M., & Demissie, H. (2020). Comparison and optimization for DNA extraction of okra (Abelmoschus esculentus L. Moench). African Journal of Biotechnology, 19(6), 353-361. DOI: https://doi.org/10.5897/AJB2019.16991
  11. Kumar, S., Parekh, M. J., Fougat, R. S., Patel, S. K., Patel, C. B., Kumar, M., & Patel, B. R. (2017). Assessment of genetic diversity among okra genotypes using SSR markers. Journal of plant biochemistry and biotechnology, 26, 172-178. DOI: https://doi.org/10.1007/s13562-016-0378-2
  12. Kyriakopoulou, O. G., Arens, P., Pelgrom, K. T., Karapanos, I., Bebeli, P. & Passam, H. C. (2014). Genetic and morphological diversity of okra (Abelmoschus esculentus [L.] Moench.) genotypes and their possible relationships, with particular reference to Greek landraces. Scientia Horticulturae, 171, 58-70. DOI: https://doi.org/10.1016/j.scienta.2014.03.029
  13. Meena, R. K., Verma, A. K., Kumar, M., Chatterjee, T. & Thakur, S. (2015). Evaluation of okra (Abelmoschus esculentus) germplasm against yellow vein mosaic disease. Indian Phytopathology, 68(2), 226-228.
  14. Meena, R. K., Chhatterjee, T., & Thakur, S. (2014). An efficient method of genomic DNA isolation from mucilage-rich okra leaves for molecular biology studies. Indian J Appl Res, 4(1), 57-59. DOI: https://doi.org/10.15373/2249555X/JAN2014/18
  15. Seth, T., Mishra, G. P., Singh, B., Kashyap, S., Mishra, S. K., Tiwari, S. K., & Singh, P. M. (2018). Optimization of quality DNA isolation protocol from various mucilage-rich cultivated and wild Abelmoschus sp. and its validation through PCR amplification. Vegetable Science, 45(01), 1-6.
  16. Sharma, K., Bhattacharjee, R., Sartie, A., & Kumar, P. L. (2013). An improved method of DNA extraction from plants for pathogen detection and genotyping by polymerase chain reaction. African Journal of Biotechnology, 12(15). DOI: https://doi.org/10.5897/AJB12.2096
  17. Singh, B. D. & Singh, A. K. (2015). Marker-assisted plant breeding: principles and practices. Springer.Book Edition (1). Pp. 1-514. DOI: https://doi.org/10.1007/978-81-322-2316-0
  18. Wang, X., Liu, X., Shi, N., Zhang, Z., Chen, Y., Yan, M., & Li, Y. (2023). Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food chemistry. Pp. 134-142. DOI: https://doi.org/10.2139/ssrn.4191930
  19. Xie, J., Del Tredici, P., LaPorte, M., Bekmetjev, A., Lemmon, A. R., Lemmon, E. M., Gong, W., Tang.Y., & Li, J. (2023). Phylogenetic relationships of Tilia (Malvaceae) are inferred from multiple nuclear loci and plastid genomes. International Journal of Plant Sciences, 184(1), 56-67. DOI: https://doi.org/10.1086/722474
  20. Zhan, Y., Wu, Q., Chen, Y., Tang, M., Sun, C., Sun, J., & Yu, C. (2019). Comparative proteomic analysis of okra (Abelmoschus esculentus L.) seedlings under salt stress. BMC Genomics, 20, 1-12. DOI: https://doi.org/10.1186/s12864-019-5737-7
  21. Zhang, X., Li, J., Shao, L., Qin, F., Yang, J., Gu, H., Zhai, P., & Pan, X. (2023). Effects of organic fertilizers on yield, soil physico-chemical property, soil microbial community diversity, and structure of Brassica rapa var. Chinensis. Frontiers in Microbiology. Pp.123-137. DOI: https://doi.org/10.3389/fmicb.2023.1132853