Main Article Content
Abstract
The current study reveals that vermicomposting garden waste (GW) and kitchen waste (KW) is a highly effective eco-biotechnological method for converting garden waste (GW) and kitchen waste (KW) into cow dung using Eisenia fetida. This technique is both excellent and environmentally friendly. In this study, we utilized cow dung (CD) as the initial feeding stock, along with various composting materials. The experiment was conducted in the spring season in different ratios of both waste [garden waste, marking as G1, G2, G3, and K1, K2, K3] with cow dung for 65 days. The changes in PWC, growth rate, and HPR in different ratios of both garden and kitchen waste were significantly different compared to the CD. The changes in PWC of diIt was found that the changes in PWC for different amounts of garden waste were significantly different from the CD in terms of growth rate (F3,8: 47.16; p < 0.0001; one-way ANOVA), HPR (F3,8: 4.45; p = 0.041; one-way ANOVA), and the same was true for kitchen waste. The changes in PWC for different amounts of kitchen waste were significantly different from the CD in terms of growth rate (F3,8: 164.8; p < 0.0001; one-way ANOVA), and HPR (F3,8: 52.19; p < 0.0001; one-way ANOVA). meters are analyzed during vermicomposting. Earthworm activity significantly reduced pH 0.5 to 2.18 and also decreased organic carbon and organic matter content from 28.9% to 71.3%. After vermicomposting, the total Kjeldahl nitrogen and available phosphorous content significantly increased from 32% to 171% in all mixtures. Moisture content and bulk density both decreased significantly in all mixtures from 10.9% to 81.7%. The results indicated that the G2 and K2 were the best combination for earthworm fecundity and growth rate.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Achsah, R.S., & Prabha, M.L. (2013). Potential of vermicompost produced from banana waste (Musa paradisiaca) on the growth parameters of Solanum lycopersicum. International Journal of ChemTech Research, 5, 2141–2153.
- Bhat, S. A., Singh, J., & Vig, A. P. (2015). Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus, 4(1), 1-9. DOI: https://doi.org/10.1186/s40064-014-0780-y
- Bhat, S. A., Singh, J., & Vig, A. P. (2018). Earthworms as organic waste managers and biofertilizer producers. Waste and biomass valorization, 9, 1073-1086. DOI: https://doi.org/10.1007/s12649-017-9899-8
- Behera, P. K. (2006). Soil and solid waste analysis: a laboratory manual. Dominant publishers and distributors.
- Biruntha, M., Karmegam, N., Archana, J., Selvi, B. K., & Paul, J. A. J., Balamuralikrishnan, B., Ravindran, B. (2020). Vermiconversion of biowastes with low-to-high C/N ratio into value-added vermicompost. Bioresource technology, 297, 122398. DOI: https://doi.org/10.1016/j.biortech.2019.122398
- Boruah, T., Barman, A., Kalita, P., Lahkar, J., & Deka, H. (2019). Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresource Technology, 294, 122147. DOI: https://doi.org/10.1016/j.biortech.2019.122147
- Das, D., & Deka, H. (2021). Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: changes in nutrient profile and assessment of the maturity of the end products. Environmental Science and Pollution Research, 28, 35717-35727. DOI: https://doi.org/10.1007/s11356-021-13214-z
- Das, S., Lee, S. H., Kumar, P., Kim, K. H., Lee, S. S., & Bhattacharya, S. S. (2019). Solid waste management: Scope and the challenge of sustainability. Journal of cleaner production, 228, 658-678. DOI: https://doi.org/10.1016/j.jclepro.2019.04.323
- Devi, C., & Khwairakpam, M. (2022). Earthworms as Ecological Engineers and Its Role in Bioconversion of Organic Waste Through Vermicomposting. Earthworms and their Ecological Significance, 169.
- Dou, Z., Ferguson, J. D., Galligan, D. T., Kelly, A. M., Finn, S. M., & Giegengack, R. (2016). Assessing US food wastage and opportunities for reduction. Global Food Security, 8, 19-26. DOI: https://doi.org/10.1016/j.gfs.2016.02.001
- Emperor, G. N., Kumar, K., & Ravikumar, G. (2016). Growth performance and hatchling rate of Eudrilus eugeniae and Eisenia fetida in different concentrations of tea waste, cow dung, and kitchen waste mixture. As. J. of Inn. Res, 1(1), 46-52.
- Gupta, R., & Garg, V. K. (2017). Vermitechnology for organic waste recycling. In Current Developments in Biotechnology and Bioengineering, 83-112. Elsevier. DOI: https://doi.org/10.1016/B978-0-444-63664-5.00005-8
- Gutiérrez, M. C., Serrano, A., Siles, J. A., Chica, A. F., & Martín, M. A. (2017). Centralized management of sewage sludge and agro-industrial waste through co-composting. Journal of environmental management, 196, 387-393. DOI: https://doi.org/10.1016/j.jenvman.2017.03.042
- He, R., Sandoval-Reyes, M., Scott, I., Semeano, R., Ferrao, P., Matthews, S., & Small, M. J. (2022). Global knowledge base for municipal solid waste management: Framework development and application in waste generation prediction. Journal of Cleaner Production, 377, 134501. DOI: https://doi.org/10.1016/j.jclepro.2022.134501
- Hussain, N., Das, S., Goswami, L., Das, P., Sahariah, B., & Bhattacharya, S. S. (2018). Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: assessment of maturity time, microbial community structure, and economic benefit. Journal of Cleaner Production, 182, 414-426. DOI: https://doi.org/10.1016/j.jclepro.2018.01.241
- Karmegam, N., & Daniel, T. (2009). Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae). Bioresource Technology, 100, 4790–4796. DOI: https://doi.org/10.1016/j.biortech.2009.05.004
- Karwal, M., & Kaushik, A. (2021). Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden. Journal of Material Cycles and Waste Management, 23, 358-370. DOI: https://doi.org/10.1007/s10163-020-01101-7
- Kauser, H., & Khwairakpam, M. (2022). Organic waste management by two-stage composting process to decrease the time required for vermicomposting. Environmental Technology & Innovation, 25, 102193. DOI: https://doi.org/10.1016/j.eti.2021.102193
- Kauser, H., Saumya, S., Haq, I., & Khwairakpam, M. (2022). Biological treatment of Climbing Hempweed biomass through optimized composting technologies-Toxicity assessment and morphological study of Abelmoschus esculentus. Journal of Environmental Management, 319, 115631. DOI: https://doi.org/10.1016/j.jenvman.2022.115631
- Khan, S., Anjum, R., Raza, S. T., Bazai, N. A., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, 132403. DOI: https://doi.org/10.1016/j.chemosphere.2021.132403
- Kiyasudeen S, K., Ibrahim, M. H., Quaik, S., Ahmed Ismail, S., S, K. K., Ibrahim, M. H. & Ismail, S. A. (2016). Vermicompost, its applications, and derivatives. Prospects of organic waste management and the significance of earthworms, 201-230. DOI: https://doi.org/10.1007/978-3-319-24708-3_9
- Kumar, A., Kamboj, N., Kamboj, V., Bisht, A., Pandey, N., & Bharti, M. (2022). Efficient Management of Rice Straw Using Vermicomposting Technology: A Synergetic Approach of Agricultural Waste Management. In Environmental Pollution and Natural Resource Management. 137-155. Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-05335-1_9
- Lim, S. L., & Wu, T. Y. (2015). Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecological. Engineering, 84, 515-519. DOI: https://doi.org/10.1016/j.ecoleng.2015.09.050
- Lim, S. L., Wu, T. Y., Lim, P. N., & Shak, K. P. Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture, 95(6), 1143-1156. DOI: https://doi.org/10.1002/jsfa.6849
- Mago, M., Gupta, R., Yadav, A., & Garg, V. K. (2022). Sustainable treatment and nutrient recovery from leafy waste through vermicomposting. Bioresource Technology, 347, 126390. DOI: https://doi.org/10.1016/j.biortech.2021.126390
- Maharjan, K. K., Noppradit, P., & Techato, K. (2023). Potential of Eisenia fetida (Redworm) for the conversion of three varieties of organic waste. International Journal of Recycling of Organic Waste in Agriculture, 12(3).
- Mazumder, P., Akhil, P. M., Khwairakpam, M., Mishra, U., & Kalamdhad, A. S. (2021) Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. Journal of Environmental Management, 289, 112461. DOI: https://doi.org/10.1016/j.jenvman.2021.112461
- Mosier, A. R., Morrison, S. M., & Elmund, G. K., (1977). Odors and emissions from organic wastes. Soils for management of organic wastes and waste waters, 529-571. DOI: https://doi.org/10.2134/1977.soilsformanagementoforganic.c21
- Nandy, S., Fortunato, E., & Martins, R. (2022). Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International, 32(1), 1-9. DOI: https://doi.org/10.1016/j.pnsc.2022.01.001
- Nulle, I., & Vronskis, O. (2017). Experimental study of vermicompost drying process. In 16th International Scientific Conference" Engineering for Rural Development", Jelgava, Latvia, 24-26 May 2017, 1086-1092).
- Ramnarain, Y. I., Ansari, A. A., & Ori, L. (2019). Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. International Journal of Recycling of Organic Waste in Agriculture, 8, 23-36. DOI: https://doi.org/10.1007/s40093-018-0225-7
- Parashar, C. K., Das, P., Samanta, S., Ganguly, A., & Chatterjee, P. K. (2020). Municipal solid wastes—a promising sustainable source of energy: a review on different waste-to-energy conversion technologies. Energy Recovery Processes from Wastes, 151-163. DOI: https://doi.org/10.1007/978-981-32-9228-4_13
- Pottipati, S., Jat, N., & Kalamdhad, A. S. (2023). Bioconversion of Eichhornia crassipes into vermicompost on a large scale through improving operational aspects of in-vessel biodegradation process: Microbial dynamics. Bioresource. Technology, 374, 128767. DOI: https://doi.org/10.1016/j.biortech.2023.128767
- Rai, R., & Suthar, S. (2020). Composting of toxic weed Parthenium hysterophorus: nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresource. Technology, 311, 123523. DOI: https://doi.org/10.1016/j.biortech.2020.123523
- Deepthi, Rini, J., M. P., Saminathan, K., Narendhirakannan, R. T., Karmegam, N., & Kathireswari, P. (2020). Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresource technology, 313, 123690. DOI: https://doi.org/10.1016/j.biortech.2020.123690
- Kiyasudeen S, K., Ibrahim, M. H., Quaik, S., Ahmed Ismail, S., Ibrahim, M. H., Quaik, S., & Ismail, S. A. (2016). General introduction to earthworms, their classifications, and biology. Prospects of Organic Waste Management and the Significance of Earthworms, 69-103. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-24708-3_4
- Sathyan, A., Haq, I., Kalamdhad, A.S., & Khwaraikpam, M. (2022). Recent advancements in anaerobic digestion: A Novel approach for waste to energy. In Advanced Organic Waste Management. 233-246, Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85792-5.00017-4
- Shah, A.V., Singh, A., Mohanty, S.S., Srivastava, V.K., & Varjani, S. (2022). Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresource technology, 349, 126835. DOI: https://doi.org/10.1016/j.biortech.2022.126835
- Sharma, K., & Garg, V.K. (2017). Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environmental Science and Pollution Research, 24, 7829–7836. DOI: https://doi.org/10.1007/s11356-017-8438-2
- Sharma, K., & Garg, V.K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708–715. DOI: https://doi.org/10.1016/j.biortech.2017.11.101
- Suthar, S. (2009). Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecological engineering, 35(5), 914-920. DOI: https://doi.org/10.1016/j.ecoleng.2008.12.019
- Suthar, S., & Singh, S. (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). International Journal of Environmental Science & Technology, 5, 99-106. DOI: https://doi.org/10.1007/BF03326002
- Suthar, S., & Ram, S. (2008). Does substrate quality affect earthworm growth and reproduction patterns in vermicomposting systems? A study using three popular composting earthworms. International Journal of Environment and Waste Management, 2(6), 584-600. DOI: https://doi.org/10.1504/IJEWM.2008.021862
- Tripathi, G., & Bhardwaj, P. (2004). Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource technology, 92(3), 275-283. DOI: https://doi.org/10.1016/j.biortech.2003.09.005
- Trivedy, R. K., & Goel, P. K. (1984). Chemical and biological methods for water pollution studies. Environmental publications.
- Varma, V. S., Yadav, J., Das, S., & Kalamdhad, A. S. (2015) Potential of waste carbide sludge addition on earthworm growth and organic matter degradation during vermicomposting of agricultural wastes. Ecological Engineering, 83, 90-95. DOI: https://doi.org/10.1016/j.ecoleng.2015.05.050
- Velvizhi, G., Shanthakumar, S., Das, B., Pugazhendhi, A., Priya, T. S., Ashok, B., & Karthick, C. (2020). Biodegradable and non-biodegradable fraction of municipal solid waste for multifaceted applications through a closed loop integrated refinery platform: Paving a path towards circular economy. Science of the Total Environment, 731, 138049. DOI: https://doi.org/10.1016/j.scitotenv.2020.138049
- Vikrant, D., & Shekhar, P. (2013). Generation of biogas from kitchen waste-experimental analysis. TVS (g/L), E3S Web of Conferences 51, 01002 (2018). 68(93), 263. DOI: https://doi.org/10.1051/e3sconf/20185101002
- Vodounnou, D. S. J. V., Kpogue, D. N. S., Tossavi, C. E., Mennsah, G. A., & Fiogbe, E. D. (2016). Effect of animal waste and vegetable compost on production and growth of earthworm (Eisenia fetida) during vermiculture. International Journal of Recycling of Organic Waste in Agriculture, 5, 87-92. DOI: https://doi.org/10.1007/s40093-016-0119-5
- Walkley, A., & Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37, 29-38. DOI: https://doi.org/10.1097/00010694-193401000-00003
- Yadav, A., & Garg, V. K. (2019). Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresource technology. 274, 512-517. DOI: https://doi.org/10.1016/j.biortech.2018.12.023
References
Achsah, R.S., & Prabha, M.L. (2013). Potential of vermicompost produced from banana waste (Musa paradisiaca) on the growth parameters of Solanum lycopersicum. International Journal of ChemTech Research, 5, 2141–2153.
Bhat, S. A., Singh, J., & Vig, A. P. (2015). Potential utilization of bagasse as feed material for earthworm Eisenia fetida and production of vermicompost. Springerplus, 4(1), 1-9. DOI: https://doi.org/10.1186/s40064-014-0780-y
Bhat, S. A., Singh, J., & Vig, A. P. (2018). Earthworms as organic waste managers and biofertilizer producers. Waste and biomass valorization, 9, 1073-1086. DOI: https://doi.org/10.1007/s12649-017-9899-8
Behera, P. K. (2006). Soil and solid waste analysis: a laboratory manual. Dominant publishers and distributors.
Biruntha, M., Karmegam, N., Archana, J., Selvi, B. K., & Paul, J. A. J., Balamuralikrishnan, B., Ravindran, B. (2020). Vermiconversion of biowastes with low-to-high C/N ratio into value-added vermicompost. Bioresource technology, 297, 122398. DOI: https://doi.org/10.1016/j.biortech.2019.122398
Boruah, T., Barman, A., Kalita, P., Lahkar, J., & Deka, H. (2019). Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresource Technology, 294, 122147. DOI: https://doi.org/10.1016/j.biortech.2019.122147
Das, D., & Deka, H. (2021). Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: changes in nutrient profile and assessment of the maturity of the end products. Environmental Science and Pollution Research, 28, 35717-35727. DOI: https://doi.org/10.1007/s11356-021-13214-z
Das, S., Lee, S. H., Kumar, P., Kim, K. H., Lee, S. S., & Bhattacharya, S. S. (2019). Solid waste management: Scope and the challenge of sustainability. Journal of cleaner production, 228, 658-678. DOI: https://doi.org/10.1016/j.jclepro.2019.04.323
Devi, C., & Khwairakpam, M. (2022). Earthworms as Ecological Engineers and Its Role in Bioconversion of Organic Waste Through Vermicomposting. Earthworms and their Ecological Significance, 169.
Dou, Z., Ferguson, J. D., Galligan, D. T., Kelly, A. M., Finn, S. M., & Giegengack, R. (2016). Assessing US food wastage and opportunities for reduction. Global Food Security, 8, 19-26. DOI: https://doi.org/10.1016/j.gfs.2016.02.001
Emperor, G. N., Kumar, K., & Ravikumar, G. (2016). Growth performance and hatchling rate of Eudrilus eugeniae and Eisenia fetida in different concentrations of tea waste, cow dung, and kitchen waste mixture. As. J. of Inn. Res, 1(1), 46-52.
Gupta, R., & Garg, V. K. (2017). Vermitechnology for organic waste recycling. In Current Developments in Biotechnology and Bioengineering, 83-112. Elsevier. DOI: https://doi.org/10.1016/B978-0-444-63664-5.00005-8
Gutiérrez, M. C., Serrano, A., Siles, J. A., Chica, A. F., & Martín, M. A. (2017). Centralized management of sewage sludge and agro-industrial waste through co-composting. Journal of environmental management, 196, 387-393. DOI: https://doi.org/10.1016/j.jenvman.2017.03.042
He, R., Sandoval-Reyes, M., Scott, I., Semeano, R., Ferrao, P., Matthews, S., & Small, M. J. (2022). Global knowledge base for municipal solid waste management: Framework development and application in waste generation prediction. Journal of Cleaner Production, 377, 134501. DOI: https://doi.org/10.1016/j.jclepro.2022.134501
Hussain, N., Das, S., Goswami, L., Das, P., Sahariah, B., & Bhattacharya, S. S. (2018). Intensification of vermitechnology for kitchen vegetable waste and paddy straw employing earthworm consortium: assessment of maturity time, microbial community structure, and economic benefit. Journal of Cleaner Production, 182, 414-426. DOI: https://doi.org/10.1016/j.jclepro.2018.01.241
Karmegam, N., & Daniel, T. (2009). Growth, reproductive biology and life cycle of the vermicomposting earthworm, Perionyx ceylanensis Mich. (Oligochaeta: Megascolecidae). Bioresource Technology, 100, 4790–4796. DOI: https://doi.org/10.1016/j.biortech.2009.05.004
Karwal, M., & Kaushik, A. (2021). Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden. Journal of Material Cycles and Waste Management, 23, 358-370. DOI: https://doi.org/10.1007/s10163-020-01101-7
Kauser, H., & Khwairakpam, M. (2022). Organic waste management by two-stage composting process to decrease the time required for vermicomposting. Environmental Technology & Innovation, 25, 102193. DOI: https://doi.org/10.1016/j.eti.2021.102193
Kauser, H., Saumya, S., Haq, I., & Khwairakpam, M. (2022). Biological treatment of Climbing Hempweed biomass through optimized composting technologies-Toxicity assessment and morphological study of Abelmoschus esculentus. Journal of Environmental Management, 319, 115631. DOI: https://doi.org/10.1016/j.jenvman.2022.115631
Khan, S., Anjum, R., Raza, S. T., Bazai, N. A., & Ihtisham, M. (2022). Technologies for municipal solid waste management: Current status, challenges, and future perspectives. Chemosphere, 288, 132403. DOI: https://doi.org/10.1016/j.chemosphere.2021.132403
Kiyasudeen S, K., Ibrahim, M. H., Quaik, S., Ahmed Ismail, S., S, K. K., Ibrahim, M. H. & Ismail, S. A. (2016). Vermicompost, its applications, and derivatives. Prospects of organic waste management and the significance of earthworms, 201-230. DOI: https://doi.org/10.1007/978-3-319-24708-3_9
Kumar, A., Kamboj, N., Kamboj, V., Bisht, A., Pandey, N., & Bharti, M. (2022). Efficient Management of Rice Straw Using Vermicomposting Technology: A Synergetic Approach of Agricultural Waste Management. In Environmental Pollution and Natural Resource Management. 137-155. Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-031-05335-1_9
Lim, S. L., & Wu, T. Y. (2015). Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecological. Engineering, 84, 515-519. DOI: https://doi.org/10.1016/j.ecoleng.2015.09.050
Lim, S. L., Wu, T. Y., Lim, P. N., & Shak, K. P. Y. (2015). The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture, 95(6), 1143-1156. DOI: https://doi.org/10.1002/jsfa.6849
Mago, M., Gupta, R., Yadav, A., & Garg, V. K. (2022). Sustainable treatment and nutrient recovery from leafy waste through vermicomposting. Bioresource Technology, 347, 126390. DOI: https://doi.org/10.1016/j.biortech.2021.126390
Maharjan, K. K., Noppradit, P., & Techato, K. (2023). Potential of Eisenia fetida (Redworm) for the conversion of three varieties of organic waste. International Journal of Recycling of Organic Waste in Agriculture, 12(3).
Mazumder, P., Akhil, P. M., Khwairakpam, M., Mishra, U., & Kalamdhad, A. S. (2021) Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. Journal of Environmental Management, 289, 112461. DOI: https://doi.org/10.1016/j.jenvman.2021.112461
Mosier, A. R., Morrison, S. M., & Elmund, G. K., (1977). Odors and emissions from organic wastes. Soils for management of organic wastes and waste waters, 529-571. DOI: https://doi.org/10.2134/1977.soilsformanagementoforganic.c21
Nandy, S., Fortunato, E., & Martins, R. (2022). Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International, 32(1), 1-9. DOI: https://doi.org/10.1016/j.pnsc.2022.01.001
Nulle, I., & Vronskis, O. (2017). Experimental study of vermicompost drying process. In 16th International Scientific Conference" Engineering for Rural Development", Jelgava, Latvia, 24-26 May 2017, 1086-1092).
Ramnarain, Y. I., Ansari, A. A., & Ori, L. (2019). Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. International Journal of Recycling of Organic Waste in Agriculture, 8, 23-36. DOI: https://doi.org/10.1007/s40093-018-0225-7
Parashar, C. K., Das, P., Samanta, S., Ganguly, A., & Chatterjee, P. K. (2020). Municipal solid wastes—a promising sustainable source of energy: a review on different waste-to-energy conversion technologies. Energy Recovery Processes from Wastes, 151-163. DOI: https://doi.org/10.1007/978-981-32-9228-4_13
Pottipati, S., Jat, N., & Kalamdhad, A. S. (2023). Bioconversion of Eichhornia crassipes into vermicompost on a large scale through improving operational aspects of in-vessel biodegradation process: Microbial dynamics. Bioresource. Technology, 374, 128767. DOI: https://doi.org/10.1016/j.biortech.2023.128767
Rai, R., & Suthar, S. (2020). Composting of toxic weed Parthenium hysterophorus: nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresource. Technology, 311, 123523. DOI: https://doi.org/10.1016/j.biortech.2020.123523
Deepthi, Rini, J., M. P., Saminathan, K., Narendhirakannan, R. T., Karmegam, N., & Kathireswari, P. (2020). Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. Bioresource technology, 313, 123690. DOI: https://doi.org/10.1016/j.biortech.2020.123690
Kiyasudeen S, K., Ibrahim, M. H., Quaik, S., Ahmed Ismail, S., Ibrahim, M. H., Quaik, S., & Ismail, S. A. (2016). General introduction to earthworms, their classifications, and biology. Prospects of Organic Waste Management and the Significance of Earthworms, 69-103. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-24708-3_4
Sathyan, A., Haq, I., Kalamdhad, A.S., & Khwaraikpam, M. (2022). Recent advancements in anaerobic digestion: A Novel approach for waste to energy. In Advanced Organic Waste Management. 233-246, Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85792-5.00017-4
Shah, A.V., Singh, A., Mohanty, S.S., Srivastava, V.K., & Varjani, S. (2022). Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresource technology, 349, 126835. DOI: https://doi.org/10.1016/j.biortech.2022.126835
Sharma, K., & Garg, V.K. (2017). Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environmental Science and Pollution Research, 24, 7829–7836. DOI: https://doi.org/10.1007/s11356-017-8438-2
Sharma, K., & Garg, V.K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708–715. DOI: https://doi.org/10.1016/j.biortech.2017.11.101
Suthar, S. (2009). Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecological engineering, 35(5), 914-920. DOI: https://doi.org/10.1016/j.ecoleng.2008.12.019
Suthar, S., & Singh, S. (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). International Journal of Environmental Science & Technology, 5, 99-106. DOI: https://doi.org/10.1007/BF03326002
Suthar, S., & Ram, S. (2008). Does substrate quality affect earthworm growth and reproduction patterns in vermicomposting systems? A study using three popular composting earthworms. International Journal of Environment and Waste Management, 2(6), 584-600. DOI: https://doi.org/10.1504/IJEWM.2008.021862
Tripathi, G., & Bhardwaj, P. (2004). Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresource technology, 92(3), 275-283. DOI: https://doi.org/10.1016/j.biortech.2003.09.005
Trivedy, R. K., & Goel, P. K. (1984). Chemical and biological methods for water pollution studies. Environmental publications.
Varma, V. S., Yadav, J., Das, S., & Kalamdhad, A. S. (2015) Potential of waste carbide sludge addition on earthworm growth and organic matter degradation during vermicomposting of agricultural wastes. Ecological Engineering, 83, 90-95. DOI: https://doi.org/10.1016/j.ecoleng.2015.05.050
Velvizhi, G., Shanthakumar, S., Das, B., Pugazhendhi, A., Priya, T. S., Ashok, B., & Karthick, C. (2020). Biodegradable and non-biodegradable fraction of municipal solid waste for multifaceted applications through a closed loop integrated refinery platform: Paving a path towards circular economy. Science of the Total Environment, 731, 138049. DOI: https://doi.org/10.1016/j.scitotenv.2020.138049
Vikrant, D., & Shekhar, P. (2013). Generation of biogas from kitchen waste-experimental analysis. TVS (g/L), E3S Web of Conferences 51, 01002 (2018). 68(93), 263. DOI: https://doi.org/10.1051/e3sconf/20185101002
Vodounnou, D. S. J. V., Kpogue, D. N. S., Tossavi, C. E., Mennsah, G. A., & Fiogbe, E. D. (2016). Effect of animal waste and vegetable compost on production and growth of earthworm (Eisenia fetida) during vermiculture. International Journal of Recycling of Organic Waste in Agriculture, 5, 87-92. DOI: https://doi.org/10.1007/s40093-016-0119-5
Walkley, A., & Black, I.A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37, 29-38. DOI: https://doi.org/10.1097/00010694-193401000-00003
Yadav, A., & Garg, V. K. (2019). Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresource technology. 274, 512-517. DOI: https://doi.org/10.1016/j.biortech.2018.12.023