Main Article Content
Abstract
Global agriculture practices rely heavily on the application of fungicides, pesticides and synthetic fertilizers. Several bacterial strains were isolated from root nodules and screened for plant growth-promoting (PGP) activities. The selected isolates were characterized biochemically and identified by 16S rRNA sequencing. The ability of bacterial isolates to produce siderophores, phosphate solubilization, production of indole acetic acid (IAA) and other characteristics of plant growth promoting (PGP)activities were evaluated from the root nodules of a wild leguminous plant, Tephrosia purpurea (L.) Pers. Based on the results, the isolates were determined as Bacillus altitudinis and Pseudomonas azotoformans. The bacterial consortium consisting of B. altitudinis + P. azotoformans exhibited a substantial enhancement in both root length (35.55%), and shoot length (43.2%) when compared to the control. This study concludes that utilization of the beneficial traits of these non-rhizobial nodule endophytes bacteria improve nodulation biomass accumulation and plant vegetative growth parameters in T. purpurea. The present research has the potential to advance the adoption of eco-friendly agricultural practices and provide an alternative substitute for traditional chemical fertilizers.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Aeron, A., Dubey, R. C. & Maheshwari, D. K. (2021). Next-generation biofertilizers and novel biostimulants: documentation and validation of mechanism of endophytic plant growth promoting rhizobacteria in tomato. Archives of Microbiology, 203(6), 3715-3726. https://doi.org/10.1007/s00203-021-02344-0 DOI: https://doi.org/10.1007/s00203-021-02344-0
- Agarwal, S., Kumari, S., & Khan, S. (2021). Quality control of biofertilizers. Edited by: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Mashallah Rezakazemi. Biofertilizers: Study and Impact, 413-428. https://doi.org/10.1002/9781119724995.ch14 DOI: https://doi.org/10.1002/9781119724995.ch14
- Bessai, S. A., Bensidhoum, L. & Nabti, E. H. (2022). Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatalysis and Agricultural Biotechnology, 41, 1-13. https://doi.org/10.1016/j.bcab.2022.102319 DOI: https://doi.org/10.1016/j.bcab.2022.102319
- Bhargava, Y., Murthy, J. S. R., Kumar, T. R. & Rao, M. N. (2016). Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semi-arid region, Tirupati, India. Advances in Microbiology, 6(1), 1-12. https://doi.org/10.1007/s00344-021-10406-2 DOI: https://doi.org/10.4236/aim.2016.61001
- Bhattacharya, C., Deshpande, B. & Pandey, B. (2013). Isolation and characterization of Rhizobium sp. form root of legume plant (Pisum sativum) and Its antibacterial activity against different bacterial strains. The Journal of Agricultural Science, 3(4), 138-141.
- Bhutani, N., Maheshwari, R., Kumar, P. & Suneja, P. (2021). Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants. Plant Gene, 28, 1-12. https://doi.org/10.1016/j.plgene.2021.100326 DOI: https://doi.org/10.1016/j.plgene.2021.100326
- Bishnoi, U. (2018). Agriculture and the dark side of chemical fertilizers. Environmental analysis and Ecology studies, 3(1), 552-564. DOI: https://doi.org/10.31031/EAES.2018.03.000552
- Chen, W. F., Wang, E. T., Ji, Z. J., & Zhang, J. J. (2021). Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. Journal of Applied Microbiology, 131(2), 553-563. https://doi.org/10.1111/jam.14960 DOI: https://doi.org/10.1111/jam.14960
- Chouhan, B., Tak, N., Bissa, G., Adhikari, D., Barik, S. K., Sprent, J. I. & Gehlot, H. S. (2022). Evolution of novel strains of Ensifer nodulating the invasive legume Leucaena leucocephala (Lam.) de Wit in different climatic regions of India through lateral gene transfer. FEMS Microbiology Ecology, 98(9), 1-19. https://doi.org/10.1093/femsec/fiac086 DOI: https://doi.org/10.1093/femsec/fiac086
- de Sousa, S. M., de Oliveira, C. A., Andrade, D. L., de Carvalho, C. G., Ribeiro, V. P., Pastina, M. M., & Gomes, E. A. (2021). Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. Journal of Plant Growth Regulation, 40(2), 867-877. https://doi.org/10.1007/s00344-020-10146-9 DOI: https://doi.org/10.1007/s00344-020-10146-9
- De, P. S. & Basu, P. S. (1996). Production of extracellular polysaccharides by a Rhizobium species from the root nodules of Tephrosia purpurea Pers. Acta Biotechnologica, 16(2‐3), 155-162. https://doi.org/10.1002/abio.370160210 DOI: https://doi.org/10.1002/abio.370160210
- Dheeman, S., Baliyan, N., Dubey, R. C., Maheshwari, D. K., Kumar, S. & Chen, L. (2020). Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Canadian Journal of Microbiology, 66(2), 111-124. https://doi.org/10.1139/cjm-2019-0103 DOI: https://doi.org/10.1139/cjm-2019-0103
- Dubey, R. C. & Maheshwari, D. K. (2012). Practical Microbiology. S. Chand and Co. New Delhi.
- Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 1-18. https://doi.org/10.3389/fmicb.2019.02791 DOI: https://doi.org/10.3389/fmicb.2019.02791
- Flores-Duarte, N. J., Caballero-Delgado, S., Pajuelo, E., Mateos-Naranjo, E., Redondo-Gomez, S., Navarro-Torre, S., & Rodríguez-Llorente, I. D. (2022). Enhanced legume growth and adaptation to degraded estuarine soils using Pseudomonas sp. nodule endophytes. Frontiers in Microbiology, 13, 1005458. https://doi.org/10.3389/fmicb.2022.1005458 DOI: https://doi.org/10.3389/fmicb.2022.1005458
- Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica., 1-15. https://doi.org/10.6064/2012/963401 DOI: https://doi.org/10.6064/2012/963401
- Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotechnology, 5(4), 355-377. https://doi.org/10.1007/s13205-014-0241-x DOI: https://doi.org/10.1007/s13205-014-0241-x
- Gordon, S. A. & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192-195. https://doi.org/10.1104%2Fpp.26.1.192 DOI: https://doi.org/10.1104/pp.26.1.192
- Hakim, S., Imran, A. & Mirza, M. S. (2021). Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan. Brazilian Journal of Microbiology, 52, 311-324. DOI: https://doi.org/10.1007/s42770-020-00397-9
- Hyder, S., Rizvi, Z. F., los Santos-Villalobos, S. D., Santoyo, G., Gondal, A., Khalid, N., & Rani, A. (2023). Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. Journal of plant nutrition, 46(10), 2551-2580.
- https://doi.org/10.1080/01904167.2022.2160742 DOI: https://doi.org/10.1080/01904167.2022.2160742
- Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D. & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Direct Research Journal of the Science of Food and Agriculture, 6(3), 73-83.
- Jensen, H. (1954). The azotobacteriaceae. Bacteriological Reviews, 18(4), 195-214. DOI: https://doi.org/10.1128/MMBR.18.4.195-214.1954
- Kaliravana, N., & Rao, A. N. (2024). Desertification, Water and Women in Banni Grasslands of India. History and Sociology of South Asia, 18(2), 151-167.
- https://doi.org/10.1177/22308075231226360 DOI: https://doi.org/10.1177/22308075231226360
- Kaur, N., & Sharma, P. (2013). Screening and characterization of native Pseudomonas sp. as plant growth promoting rhizobacteria in chickpea (Cicer arietinum L.) rhizosphere. African Journal of Microbiology Research, 7(16), 1465-1474. DOI: https://doi.org/10.5897/AJMR12.362
- Kaur, R. (2018). Governance of sustainable agriculture schemes in India with special reference to bio-fertilizer project and analysis. In conference proceedings of the second international conference on recent advances in Bioenergy Research Springer, Singapore, 147-156. https://doi.org/10.1007/978-981-10-6107-3_12 DOI: https://doi.org/10.1007/978-981-10-6107-3_12
- Khan, A., Panthari, D., Sharma, R. S., Punetha, A., Singh, A. V., & Upadhayay, V. K. (2023). Biofertilizers: a microbial-assisted strategy to improve plant growth and soil health. Edited by: Satish Chandra Pandey, Veni Pande, Mukesh Samant. In Advanced microbial techniques in agriculture, environment, and health management. Academic Press, pp. 97-118.
- https://doi.org/10.1016/B978-0-323-91643-1.00007-7 DOI: https://doi.org/10.1016/B978-0-323-91643-1.00007-7
- Kremer, R. J. & Souissi, T. (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology, 43, 182-186. https://doi.org/10.1007/s002840010284 DOI: https://doi.org/10.1007/s002840010284
- Kumar, M., Mishra, S., Dixit, V., Kumar, M., Agarwal, L., Chauhan, P. S., & Nautiyal, C. S. (2016). Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant signaling & Behavior, 11(1), e1071004. DOI: https://doi.org/10.1080/15592324.2015.1071004
- Kumar, N., Chaudhary, A., Ahlawat, O. P., Naorem, A., Upadhyay, G., Chhokar, R. S., & Singh, G. P. (2023). Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil and Tillage Research, 228, 1-18. https://doi.org/10.1016/j.still.2023.105641 DOI: https://doi.org/10.1016/j.still.2023.105641
- Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093%2Fmolbev%2Fmsy096 DOI: https://doi.org/10.1093/molbev/msy096
- Kumari, P., Meena, M., & Upadhyay, R. S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 16, 155-162. https://doi.org/10.1016/j.bcab.2018.07.029 DOI: https://doi.org/10.1016/j.bcab.2018.07.029
- Lekatompessy, S. J. R., Widowati, T. & Simarmata, R. (2021). Potential of isolated bacteria biostimulant from soil roots on white turmeric plants (Curcuma zedoaria). Environmental Earth Sciences, 762(1), 1-12. DOI: https://doi.org/10.1088/1755-1315/762/1/012049
- Liu, J., Qi, W., Li, Q., Wang, S. G., Song, C. & Yuan, X. Z. (2020). Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech, 10, 1-11. https://doi.org/10.1007/s13205-020-2099-4 DOI: https://doi.org/10.1007/s13205-020-2099-4
- Lugtenberg, B. & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918 DOI: https://doi.org/10.1146/annurev.micro.62.081307.162918
- Mabrouk, Y., Hemissi, I., Salem, I. B., Mejri, S., Saidi, M. & Belhadj, O. (2018). Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis, 107(73495), 1-16. DOI: https://doi.org/10.5772/intechopen.73495
- Marakana, T., Sharma, M. & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. The Pharma Innovation, 7, 102-110.
- Masson-Boivin, C., & Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Current Opinion in Plant Biology, 44, 7-15. DOI: https://doi.org/10.1016/j.pbi.2017.12.001
- Mehta, A., Bhardwaj, K. K., Shaiza, M. & Gupta, R. (2021). Isolation, characterization and identification of pesticide degrading bacteria from contaminated soil for bioremediation. Biologia Futura, 72, 317-323. https://doi.org/10.1007/s42977-021-00080-6 DOI: https://doi.org/10.1007/s42977-021-00080-6
- Mowafy, M., A., Agha, S., Haroun, A. M., S., Abbas, A. M., & Elbalkini, M. (2022). Insights in nodule-inhabiting plant growth promoting bacteria and their ability to stimulate Vicia faba growth. Egyptian Journal of Basic and Applied Sciences, 9(1), 51-64. https://doi.org/10.1080/2314808X.2021.2019418 DOI: https://doi.org/10.1080/2314808X.2021.2019418
- Nagpal, S., Sharma, P. & Kumawat, K. C. (2021). Microbial bioformulations: revisiting role in sustainable agriculture. In Biofertilizers Woodhead Publishing. 1, 329-346. https://doi.org/10.1016/B978-0-12-821667-5.00016-6 DOI: https://doi.org/10.1016/B978-0-12-821667-5.00016-6
- Nalini, B. S., Muthuraju, R., Vendan, T., Brahmaprakash, G. P., YA, N. R., Nagaraju, N. & Anil, V. S. (2020). Isolation of plant growth promoting actinobacteria from the rhizosphere of finger millet and cowpea. Journal of Pharmacognosy and Phytochemistry, 9(6), 1103-1107. DOI: https://doi.org/10.22271/phyto.2020.v9.i6p.13097
- Pattnaik, B. K., Sahu, C., Choudhury, S., Santra, S. C. & Moulick, D. (2023). Importance of soil management in sustainable agriculture. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Springer, Cham., (1), 487-511. https://doi.org/10.1007/978-3-031-37424-1_22 DOI: https://doi.org/10.1007/978-3-031-37424-1_22
- Patwardhan, R. B., Abhyankar, P. S., Gore, S. S., Kalekar, S. V. & Umrani, S. P. (2022). Biofungicidal properties of rhizobacteria for plant growth promotion and plant disease resistance. In: Sayyed, R., Singh, A., Ilyas, N. (eds) antifungal metabolites of rhizobacteria for sustainable agriculture. Fungal Biology. Springer, Cham, 103-133. https://doi.org/10.1007/978-3-031-04805-0_6 DOI: https://doi.org/10.1007/978-3-031-04805-0_6
- Pierson, E. A. & Weller, D. M. (1994). To Suppress take-all and improve the growth of Wheat. Phytopathology, 84, 940-947. DOI: https://doi.org/10.1094/Phyto-84-940
- Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362-370.
- Prasad, P., Kalam, S., Sharma, N. K., Podile, A. R., & Das, S. N. (2022). Phosphate solubilization and plant growth promotion by two Pantoea strains isolated from the flowers of Hedychium coronarium L. Frontiers in Agronomy, 4, 1-10. https://doi.org/10.3389/fagro.2022.990869 DOI: https://doi.org/10.3389/fagro.2022.990869
- Rai, R. & Sen, A. (2015). Biochemical characterization of french bean associated rhizobia found in north bengal and Sikkim. Journal of Academia and Industrial Research, 4(1): 10-18.
- Raja, P. & Rangasamy, A. (2019). Isolation and characterization of nodule endophytes from bunching and semi-spreading groundnut genotypes. Madras Agricultural Journal, 106(1-3), 1-7. DOI: https://doi.org/10.29321/MAJ.2019.000280
- Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S.C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr. 21, 49–68. https://doi.org/10.1007/s42729-020-00342-7 DOI: https://doi.org/10.1007/s42729-020-00342-7
- Resilience, B. (2017). The State of food security and nutrition in the world. Rome: Building Resilience for Peace and Food Security, 1-132.
- Russell, D. W. & Sambrook, J. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1, 112.
- Samantaray, A., Chattaraj, S., Mitra, D., Ganguly, A., Kumar, R., Gaur, A., & Thatoi, H. (2024). Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Current Research in Microbial Sciences, 7, 1-19.
- https://doi.org/10.1016/j.crmicr.2024.100251 DOI: https://doi.org/10.1016/j.crmicr.2024.100251
- Saroop, S., & Tamchos, S. (2024). Impact of pesticide application: Positive and negative side. Edited by: Anket Sharma, Vinod Kumar and Bingsong Zheng. Pesticides in a Changing Environment, 155-178. https://doi.org/10.1016/B978-0-323-99427-9.00006-9 DOI: https://doi.org/10.1016/B978-0-323-99427-9.00006-9
- Sarwar, S., Khaliq, A., Yousra, M., Sultan, T., Ahmad, N., & Khan, M. Z. (2020). Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil. Communications in Soil Science and Plant Analysis, 51(12), 1680-1692. https://doi.org/10.1080/00103624.2020.1791159 DOI: https://doi.org/10.1080/00103624.2020.1791159
- Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9 DOI: https://doi.org/10.1016/0003-2697(87)90612-9
- Selvi, K. B., Paul, J. J. A., Vijaya, V. & Saraswathi, K. (2017). Analysing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochemistry and Molecular Biology Journal, 3(1), 1-7.
- Singh, A. K. & Singh, G. (2015). A study of multiple heavy metal tolerance in root nodulating bacteria. International Journal of Research and Development in Pharmacy & Life Sciences, 4(5), 1713-1721.
- Sreenivas, K., Sujatha, G., Mitran, T., Suresh, K. G., Ravisankar, T. & Rao, P. V. N. (2021). Decadal changes in land degradation status of India. Current Science, 121(4), 1-12. https://doi.org/10.18520/cs/v121/i4/539-550 DOI: https://doi.org/10.18520/cs/v121/i4/539-550
- Sun, Y., Wu, J., Shang, X., Xue, L., Ji, G., Chang, S. & Emaneghemi, B. (2022). Screening of siderophore-producing bacteria and their effects on promoting the growth of plants. Current Microbiology, 79(5), 150-161. https://doi.org/10.1007/s00284-022-02777-w DOI: https://doi.org/10.1007/s00284-022-02777-w
- Tak, N., Awasthi, E., Bissa, G., Meghwal, R. R., James, E. K., Sprent, J. S., & Gehlot, H. S. (2016). Multi locus sequence analysis and symbiotic characterization of novel Ensifer strains nodulating Tephrosia spp. in the Indian Thar Desert. Systematic and applied microbiology, 39(8), 534-545. https://doi.org/10.1016/j.syapm.2016.08.002 DOI: https://doi.org/10.1016/j.syapm.2016.08.002
- Tak, N., Gehlot, H. S., Kaushik, M., Choudhary, S., Tiwari, R., Tian, R. & Reeve, W. (2013). Genome sequence of Ensifer sp.TW10; a Tephrosia wallichii (Biyani) microsymbiont native to the Indian Thar Desert. Stand. Genome Science, 9(2), 304-314. https://doi.org/10.4056/sigs.4598281 DOI: https://doi.org/10.4056/sigs.4598281
- Tang, A., Haruna, A. O., Majid, N. M. A. & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3), 442-461. https://doi.org/10.3390/microorganisms8030442 DOI: https://doi.org/10.3390/microorganisms8030442
- Teja, A. R., Leona, G., Prasanth, J., Yatung, T., Singh, S., & Bhargav, V. (2023). Role of plant growth–promoting rhizobacteria in sustainable agriculture. Edited by: Saurabh Gangola, Saurabh Kumar, Pankaj Bhat. In Advanced Microbial Technology for Sustainable Agriculture and Environment, Academic Press pp. 175-197.
- https://doi.org/10.1016/B978-0-323-95090-9.00001-7 DOI: https://doi.org/10.1016/B978-0-323-95090-9.00001-7
- Vandana, U. K., Rajkumari, J., Singha, L. P., Satish, L., Alavilli, H., Sudheer, P. D., & Pandey, P. (2021). The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology, 10(2), 101. https://doi.org/10.3390/biology10020101 DOI: https://doi.org/10.3390/biology10020101
- Verma, J. P., Macdonald, C., Gupta, V. K. & Podile, A. R. (Eds.). (2020). New and future developments in microbial biotechnology and bioengineering: Phytomicrobiome for Sustainable Agriculture, Elsevier: 1-14.
- Vijayalakshmi, K., & Senthilkumar, G. (2023). Identification and characterization of Stenotrophomonas rhizophila isolated from rhizosphere soil of Tephrosia purpurea L. (Green manure crop) of Tamil Nadu. Research Journal of Agricultural Sciences, 15(1), 60-67.
- Wadhwa, Z., Srivastava, V., Rani, R., Kanchan, T., & Jangra, S. (2017). Isolation and characterization of Rhizobium from Chickpea (Cicer arietinum). International Journal of Current Microbiology and Applied Sciences, 6(11), 2880-2893. https://doi.org/10.20546/ijcmas.2017.611.340 DOI: https://doi.org/10.20546/ijcmas.2017.611.340
- Wongdee, J., Yuttavanichakul, W., Longthonglang, A., Teamtisong, K., Boonkerd, N., Teaumroong, N. & Tittabutr, P. (2021). Enhancing the efficiency of soybean inoculant for nodulation under multi-environmental stress conditions. Polish Journal of Microbiology, 70(2), 257-271. DOI: https://doi.org/10.33073/pjm-2021-024
- Zhang, W., Mao, G., Zhuang, J., & Yang, H. (2023). The co-inoculation of Pseudomonas chlororaphis H1 and Bacillus altitudinis Y1 promoted soybean [Glycine max (L.) Merrill] growth and increased the relative abundance of beneficial microorganisms in rhizosphere and root. Frontiers in Microbiology, 13, 1-14. https://doi.org/10.3389/fmicb.2022.1079348 DOI: https://doi.org/10.3389/fmicb.2022.1079348
- Zhao, J., Zhao, X., Wang, J., Gong, Q., Zhang, X., & Zhang, G. (2020). Isolation, identification and characterization of endophytic bacterium Rhizobium oryzihabitans sp. nov., from rice root with biotechnological potential in agriculture. Microorganisms, 8(4), 608-620. https://doi.org/10.3390/microorganisms8040608 DOI: https://doi.org/10.3390/microorganisms8040608
References
Aeron, A., Dubey, R. C. & Maheshwari, D. K. (2021). Next-generation biofertilizers and novel biostimulants: documentation and validation of mechanism of endophytic plant growth promoting rhizobacteria in tomato. Archives of Microbiology, 203(6), 3715-3726. https://doi.org/10.1007/s00203-021-02344-0 DOI: https://doi.org/10.1007/s00203-021-02344-0
Agarwal, S., Kumari, S., & Khan, S. (2021). Quality control of biofertilizers. Edited by: Inamuddin, Mohd Imran Ahamed, Rajender Boddula, Mashallah Rezakazemi. Biofertilizers: Study and Impact, 413-428. https://doi.org/10.1002/9781119724995.ch14 DOI: https://doi.org/10.1002/9781119724995.ch14
Bessai, S. A., Bensidhoum, L. & Nabti, E. H. (2022). Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatalysis and Agricultural Biotechnology, 41, 1-13. https://doi.org/10.1016/j.bcab.2022.102319 DOI: https://doi.org/10.1016/j.bcab.2022.102319
Bhargava, Y., Murthy, J. S. R., Kumar, T. R. & Rao, M. N. (2016). Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semi-arid region, Tirupati, India. Advances in Microbiology, 6(1), 1-12. https://doi.org/10.1007/s00344-021-10406-2 DOI: https://doi.org/10.4236/aim.2016.61001
Bhattacharya, C., Deshpande, B. & Pandey, B. (2013). Isolation and characterization of Rhizobium sp. form root of legume plant (Pisum sativum) and Its antibacterial activity against different bacterial strains. The Journal of Agricultural Science, 3(4), 138-141.
Bhutani, N., Maheshwari, R., Kumar, P. & Suneja, P. (2021). Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants. Plant Gene, 28, 1-12. https://doi.org/10.1016/j.plgene.2021.100326 DOI: https://doi.org/10.1016/j.plgene.2021.100326
Bishnoi, U. (2018). Agriculture and the dark side of chemical fertilizers. Environmental analysis and Ecology studies, 3(1), 552-564. DOI: https://doi.org/10.31031/EAES.2018.03.000552
Chen, W. F., Wang, E. T., Ji, Z. J., & Zhang, J. J. (2021). Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. Journal of Applied Microbiology, 131(2), 553-563. https://doi.org/10.1111/jam.14960 DOI: https://doi.org/10.1111/jam.14960
Chouhan, B., Tak, N., Bissa, G., Adhikari, D., Barik, S. K., Sprent, J. I. & Gehlot, H. S. (2022). Evolution of novel strains of Ensifer nodulating the invasive legume Leucaena leucocephala (Lam.) de Wit in different climatic regions of India through lateral gene transfer. FEMS Microbiology Ecology, 98(9), 1-19. https://doi.org/10.1093/femsec/fiac086 DOI: https://doi.org/10.1093/femsec/fiac086
de Sousa, S. M., de Oliveira, C. A., Andrade, D. L., de Carvalho, C. G., Ribeiro, V. P., Pastina, M. M., & Gomes, E. A. (2021). Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. Journal of Plant Growth Regulation, 40(2), 867-877. https://doi.org/10.1007/s00344-020-10146-9 DOI: https://doi.org/10.1007/s00344-020-10146-9
De, P. S. & Basu, P. S. (1996). Production of extracellular polysaccharides by a Rhizobium species from the root nodules of Tephrosia purpurea Pers. Acta Biotechnologica, 16(2‐3), 155-162. https://doi.org/10.1002/abio.370160210 DOI: https://doi.org/10.1002/abio.370160210
Dheeman, S., Baliyan, N., Dubey, R. C., Maheshwari, D. K., Kumar, S. & Chen, L. (2020). Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Canadian Journal of Microbiology, 66(2), 111-124. https://doi.org/10.1139/cjm-2019-0103 DOI: https://doi.org/10.1139/cjm-2019-0103
Dubey, R. C. & Maheshwari, D. K. (2012). Practical Microbiology. S. Chand and Co. New Delhi.
Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 1-18. https://doi.org/10.3389/fmicb.2019.02791 DOI: https://doi.org/10.3389/fmicb.2019.02791
Flores-Duarte, N. J., Caballero-Delgado, S., Pajuelo, E., Mateos-Naranjo, E., Redondo-Gomez, S., Navarro-Torre, S., & Rodríguez-Llorente, I. D. (2022). Enhanced legume growth and adaptation to degraded estuarine soils using Pseudomonas sp. nodule endophytes. Frontiers in Microbiology, 13, 1005458. https://doi.org/10.3389/fmicb.2022.1005458 DOI: https://doi.org/10.3389/fmicb.2022.1005458
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica., 1-15. https://doi.org/10.6064/2012/963401 DOI: https://doi.org/10.6064/2012/963401
Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotechnology, 5(4), 355-377. https://doi.org/10.1007/s13205-014-0241-x DOI: https://doi.org/10.1007/s13205-014-0241-x
Gordon, S. A. & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiology, 26(1), 192-195. https://doi.org/10.1104%2Fpp.26.1.192 DOI: https://doi.org/10.1104/pp.26.1.192
Hakim, S., Imran, A. & Mirza, M. S. (2021). Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan. Brazilian Journal of Microbiology, 52, 311-324. DOI: https://doi.org/10.1007/s42770-020-00397-9
Hyder, S., Rizvi, Z. F., los Santos-Villalobos, S. D., Santoyo, G., Gondal, A., Khalid, N., & Rani, A. (2023). Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. Journal of plant nutrition, 46(10), 2551-2580.
https://doi.org/10.1080/01904167.2022.2160742 DOI: https://doi.org/10.1080/01904167.2022.2160742
Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D. & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review. Direct Research Journal of the Science of Food and Agriculture, 6(3), 73-83.
Jensen, H. (1954). The azotobacteriaceae. Bacteriological Reviews, 18(4), 195-214. DOI: https://doi.org/10.1128/MMBR.18.4.195-214.1954
Kaliravana, N., & Rao, A. N. (2024). Desertification, Water and Women in Banni Grasslands of India. History and Sociology of South Asia, 18(2), 151-167.
https://doi.org/10.1177/22308075231226360 DOI: https://doi.org/10.1177/22308075231226360
Kaur, N., & Sharma, P. (2013). Screening and characterization of native Pseudomonas sp. as plant growth promoting rhizobacteria in chickpea (Cicer arietinum L.) rhizosphere. African Journal of Microbiology Research, 7(16), 1465-1474. DOI: https://doi.org/10.5897/AJMR12.362
Kaur, R. (2018). Governance of sustainable agriculture schemes in India with special reference to bio-fertilizer project and analysis. In conference proceedings of the second international conference on recent advances in Bioenergy Research Springer, Singapore, 147-156. https://doi.org/10.1007/978-981-10-6107-3_12 DOI: https://doi.org/10.1007/978-981-10-6107-3_12
Khan, A., Panthari, D., Sharma, R. S., Punetha, A., Singh, A. V., & Upadhayay, V. K. (2023). Biofertilizers: a microbial-assisted strategy to improve plant growth and soil health. Edited by: Satish Chandra Pandey, Veni Pande, Mukesh Samant. In Advanced microbial techniques in agriculture, environment, and health management. Academic Press, pp. 97-118.
https://doi.org/10.1016/B978-0-323-91643-1.00007-7 DOI: https://doi.org/10.1016/B978-0-323-91643-1.00007-7
Kremer, R. J. & Souissi, T. (2001). Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology, 43, 182-186. https://doi.org/10.1007/s002840010284 DOI: https://doi.org/10.1007/s002840010284
Kumar, M., Mishra, S., Dixit, V., Kumar, M., Agarwal, L., Chauhan, P. S., & Nautiyal, C. S. (2016). Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant signaling & Behavior, 11(1), e1071004. DOI: https://doi.org/10.1080/15592324.2015.1071004
Kumar, N., Chaudhary, A., Ahlawat, O. P., Naorem, A., Upadhyay, G., Chhokar, R. S., & Singh, G. P. (2023). Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil and Tillage Research, 228, 1-18. https://doi.org/10.1016/j.still.2023.105641 DOI: https://doi.org/10.1016/j.still.2023.105641
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093%2Fmolbev%2Fmsy096 DOI: https://doi.org/10.1093/molbev/msy096
Kumari, P., Meena, M., & Upadhyay, R. S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 16, 155-162. https://doi.org/10.1016/j.bcab.2018.07.029 DOI: https://doi.org/10.1016/j.bcab.2018.07.029
Lekatompessy, S. J. R., Widowati, T. & Simarmata, R. (2021). Potential of isolated bacteria biostimulant from soil roots on white turmeric plants (Curcuma zedoaria). Environmental Earth Sciences, 762(1), 1-12. DOI: https://doi.org/10.1088/1755-1315/762/1/012049
Liu, J., Qi, W., Li, Q., Wang, S. G., Song, C. & Yuan, X. Z. (2020). Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech, 10, 1-11. https://doi.org/10.1007/s13205-020-2099-4 DOI: https://doi.org/10.1007/s13205-020-2099-4
Lugtenberg, B. & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918 DOI: https://doi.org/10.1146/annurev.micro.62.081307.162918
Mabrouk, Y., Hemissi, I., Salem, I. B., Mejri, S., Saidi, M. & Belhadj, O. (2018). Potential of rhizobia in improving nitrogen fixation and yields of legumes. Symbiosis, 107(73495), 1-16. DOI: https://doi.org/10.5772/intechopen.73495
Marakana, T., Sharma, M. & Sangani, K. (2018). Isolation and characterization of halotolerant bacteria and it’s effects on wheat plant as PGPR. The Pharma Innovation, 7, 102-110.
Masson-Boivin, C., & Sachs, J. L. (2018). Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Current Opinion in Plant Biology, 44, 7-15. DOI: https://doi.org/10.1016/j.pbi.2017.12.001
Mehta, A., Bhardwaj, K. K., Shaiza, M. & Gupta, R. (2021). Isolation, characterization and identification of pesticide degrading bacteria from contaminated soil for bioremediation. Biologia Futura, 72, 317-323. https://doi.org/10.1007/s42977-021-00080-6 DOI: https://doi.org/10.1007/s42977-021-00080-6
Mowafy, M., A., Agha, S., Haroun, A. M., S., Abbas, A. M., & Elbalkini, M. (2022). Insights in nodule-inhabiting plant growth promoting bacteria and their ability to stimulate Vicia faba growth. Egyptian Journal of Basic and Applied Sciences, 9(1), 51-64. https://doi.org/10.1080/2314808X.2021.2019418 DOI: https://doi.org/10.1080/2314808X.2021.2019418
Nagpal, S., Sharma, P. & Kumawat, K. C. (2021). Microbial bioformulations: revisiting role in sustainable agriculture. In Biofertilizers Woodhead Publishing. 1, 329-346. https://doi.org/10.1016/B978-0-12-821667-5.00016-6 DOI: https://doi.org/10.1016/B978-0-12-821667-5.00016-6
Nalini, B. S., Muthuraju, R., Vendan, T., Brahmaprakash, G. P., YA, N. R., Nagaraju, N. & Anil, V. S. (2020). Isolation of plant growth promoting actinobacteria from the rhizosphere of finger millet and cowpea. Journal of Pharmacognosy and Phytochemistry, 9(6), 1103-1107. DOI: https://doi.org/10.22271/phyto.2020.v9.i6p.13097
Pattnaik, B. K., Sahu, C., Choudhury, S., Santra, S. C. & Moulick, D. (2023). Importance of soil management in sustainable agriculture. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Springer, Cham., (1), 487-511. https://doi.org/10.1007/978-3-031-37424-1_22 DOI: https://doi.org/10.1007/978-3-031-37424-1_22
Patwardhan, R. B., Abhyankar, P. S., Gore, S. S., Kalekar, S. V. & Umrani, S. P. (2022). Biofungicidal properties of rhizobacteria for plant growth promotion and plant disease resistance. In: Sayyed, R., Singh, A., Ilyas, N. (eds) antifungal metabolites of rhizobacteria for sustainable agriculture. Fungal Biology. Springer, Cham, 103-133. https://doi.org/10.1007/978-3-031-04805-0_6 DOI: https://doi.org/10.1007/978-3-031-04805-0_6
Pierson, E. A. & Weller, D. M. (1994). To Suppress take-all and improve the growth of Wheat. Phytopathology, 84, 940-947. DOI: https://doi.org/10.1094/Phyto-84-940
Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362-370.
Prasad, P., Kalam, S., Sharma, N. K., Podile, A. R., & Das, S. N. (2022). Phosphate solubilization and plant growth promotion by two Pantoea strains isolated from the flowers of Hedychium coronarium L. Frontiers in Agronomy, 4, 1-10. https://doi.org/10.3389/fagro.2022.990869 DOI: https://doi.org/10.3389/fagro.2022.990869
Rai, R. & Sen, A. (2015). Biochemical characterization of french bean associated rhizobia found in north bengal and Sikkim. Journal of Academia and Industrial Research, 4(1): 10-18.
Raja, P. & Rangasamy, A. (2019). Isolation and characterization of nodule endophytes from bunching and semi-spreading groundnut genotypes. Madras Agricultural Journal, 106(1-3), 1-7. DOI: https://doi.org/10.29321/MAJ.2019.000280
Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S.C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr. 21, 49–68. https://doi.org/10.1007/s42729-020-00342-7 DOI: https://doi.org/10.1007/s42729-020-00342-7
Resilience, B. (2017). The State of food security and nutrition in the world. Rome: Building Resilience for Peace and Food Security, 1-132.
Russell, D. W. & Sambrook, J. (2001). Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1, 112.
Samantaray, A., Chattaraj, S., Mitra, D., Ganguly, A., Kumar, R., Gaur, A., & Thatoi, H. (2024). Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. Current Research in Microbial Sciences, 7, 1-19.
https://doi.org/10.1016/j.crmicr.2024.100251 DOI: https://doi.org/10.1016/j.crmicr.2024.100251
Saroop, S., & Tamchos, S. (2024). Impact of pesticide application: Positive and negative side. Edited by: Anket Sharma, Vinod Kumar and Bingsong Zheng. Pesticides in a Changing Environment, 155-178. https://doi.org/10.1016/B978-0-323-99427-9.00006-9 DOI: https://doi.org/10.1016/B978-0-323-99427-9.00006-9
Sarwar, S., Khaliq, A., Yousra, M., Sultan, T., Ahmad, N., & Khan, M. Z. (2020). Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil. Communications in Soil Science and Plant Analysis, 51(12), 1680-1692. https://doi.org/10.1080/00103624.2020.1791159 DOI: https://doi.org/10.1080/00103624.2020.1791159
Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56. https://doi.org/10.1016/0003-2697(87)90612-9 DOI: https://doi.org/10.1016/0003-2697(87)90612-9
Selvi, K. B., Paul, J. J. A., Vijaya, V. & Saraswathi, K. (2017). Analysing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochemistry and Molecular Biology Journal, 3(1), 1-7.
Singh, A. K. & Singh, G. (2015). A study of multiple heavy metal tolerance in root nodulating bacteria. International Journal of Research and Development in Pharmacy & Life Sciences, 4(5), 1713-1721.
Sreenivas, K., Sujatha, G., Mitran, T., Suresh, K. G., Ravisankar, T. & Rao, P. V. N. (2021). Decadal changes in land degradation status of India. Current Science, 121(4), 1-12. https://doi.org/10.18520/cs/v121/i4/539-550 DOI: https://doi.org/10.18520/cs/v121/i4/539-550
Sun, Y., Wu, J., Shang, X., Xue, L., Ji, G., Chang, S. & Emaneghemi, B. (2022). Screening of siderophore-producing bacteria and their effects on promoting the growth of plants. Current Microbiology, 79(5), 150-161. https://doi.org/10.1007/s00284-022-02777-w DOI: https://doi.org/10.1007/s00284-022-02777-w
Tak, N., Awasthi, E., Bissa, G., Meghwal, R. R., James, E. K., Sprent, J. S., & Gehlot, H. S. (2016). Multi locus sequence analysis and symbiotic characterization of novel Ensifer strains nodulating Tephrosia spp. in the Indian Thar Desert. Systematic and applied microbiology, 39(8), 534-545. https://doi.org/10.1016/j.syapm.2016.08.002 DOI: https://doi.org/10.1016/j.syapm.2016.08.002
Tak, N., Gehlot, H. S., Kaushik, M., Choudhary, S., Tiwari, R., Tian, R. & Reeve, W. (2013). Genome sequence of Ensifer sp.TW10; a Tephrosia wallichii (Biyani) microsymbiont native to the Indian Thar Desert. Stand. Genome Science, 9(2), 304-314. https://doi.org/10.4056/sigs.4598281 DOI: https://doi.org/10.4056/sigs.4598281
Tang, A., Haruna, A. O., Majid, N. M. A. & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3), 442-461. https://doi.org/10.3390/microorganisms8030442 DOI: https://doi.org/10.3390/microorganisms8030442
Teja, A. R., Leona, G., Prasanth, J., Yatung, T., Singh, S., & Bhargav, V. (2023). Role of plant growth–promoting rhizobacteria in sustainable agriculture. Edited by: Saurabh Gangola, Saurabh Kumar, Pankaj Bhat. In Advanced Microbial Technology for Sustainable Agriculture and Environment, Academic Press pp. 175-197.
https://doi.org/10.1016/B978-0-323-95090-9.00001-7 DOI: https://doi.org/10.1016/B978-0-323-95090-9.00001-7
Vandana, U. K., Rajkumari, J., Singha, L. P., Satish, L., Alavilli, H., Sudheer, P. D., & Pandey, P. (2021). The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology, 10(2), 101. https://doi.org/10.3390/biology10020101 DOI: https://doi.org/10.3390/biology10020101
Verma, J. P., Macdonald, C., Gupta, V. K. & Podile, A. R. (Eds.). (2020). New and future developments in microbial biotechnology and bioengineering: Phytomicrobiome for Sustainable Agriculture, Elsevier: 1-14.
Vijayalakshmi, K., & Senthilkumar, G. (2023). Identification and characterization of Stenotrophomonas rhizophila isolated from rhizosphere soil of Tephrosia purpurea L. (Green manure crop) of Tamil Nadu. Research Journal of Agricultural Sciences, 15(1), 60-67.
Wadhwa, Z., Srivastava, V., Rani, R., Kanchan, T., & Jangra, S. (2017). Isolation and characterization of Rhizobium from Chickpea (Cicer arietinum). International Journal of Current Microbiology and Applied Sciences, 6(11), 2880-2893. https://doi.org/10.20546/ijcmas.2017.611.340 DOI: https://doi.org/10.20546/ijcmas.2017.611.340
Wongdee, J., Yuttavanichakul, W., Longthonglang, A., Teamtisong, K., Boonkerd, N., Teaumroong, N. & Tittabutr, P. (2021). Enhancing the efficiency of soybean inoculant for nodulation under multi-environmental stress conditions. Polish Journal of Microbiology, 70(2), 257-271. DOI: https://doi.org/10.33073/pjm-2021-024
Zhang, W., Mao, G., Zhuang, J., & Yang, H. (2023). The co-inoculation of Pseudomonas chlororaphis H1 and Bacillus altitudinis Y1 promoted soybean [Glycine max (L.) Merrill] growth and increased the relative abundance of beneficial microorganisms in rhizosphere and root. Frontiers in Microbiology, 13, 1-14. https://doi.org/10.3389/fmicb.2022.1079348 DOI: https://doi.org/10.3389/fmicb.2022.1079348
Zhao, J., Zhao, X., Wang, J., Gong, Q., Zhang, X., & Zhang, G. (2020). Isolation, identification and characterization of endophytic bacterium Rhizobium oryzihabitans sp. nov., from rice root with biotechnological potential in agriculture. Microorganisms, 8(4), 608-620. https://doi.org/10.3390/microorganisms8040608 DOI: https://doi.org/10.3390/microorganisms8040608