Main Article Content

Abstract

This study presents a novel approach to synthesize zinc oxide (ZnO) nanoparticles using a polymer precursor method, offering precise control over particle size in the nanometer scale. Zinc oxide nanoparticles are of significant interest due to their wide-ranging applications in various fields such as solar cells, gas sensors, photocatalysts, and nanomedicines. The synthesized nanoparticles were thoroughly characterized using X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared spectroscopy (FTIR). The distinct hexagonal form detected in the XRD pattern, featuring characteristic reflection planes at angles of 31.72° (100), 34.39° (002), 36.23° (101), and 47.44° (102), signifies the synthesis of ZnO possessing a hexagonal wurtzite structure. The SEM and TEM images revealed uniformly spherical particles with an average size ranging from 35 to 40 nm. Such uniform morphology and size distribution are critical for ensuring consistent performance in applications such as gas sensing and catalysis. Additionally, the FTIR spectra indicated a reduction in impurities after the synthesis process, highlighting the effectiveness of the polymer precursor method in producing high-quality ZnO nanoparticles. Heating the ZnO precursor material at 400°C for 2 hours significantly reduces impurities, suggesting conversion to ZnO nanoparticles.

Keywords

Fourier Transform Infrared spectroscopy Polymer precursor method Scanning Electron Microscopy Zinc oxide nanoparticles Transmission Electron Microscopy X-ray Diffraction

Article Details

Author Biographies

Rajesh Kumar, Department of Chemistry, S.S.J. University, Campus Almora, Uttarakhand, India

Department of Chemistry, Assistant Professor

Gaurav Singh Bhoj, Department of Catalyst, Defence Research and Development Organisation (DRDO) Mumbai, India

Department of Catalyst

Mahesh Chandra Arya, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital , Uttarakhand, India

Department of Chemistry

Rachan Karmakar, Department of Environmental Science, Graphic Era (Deemed to be University), Dehradun, India

Department of Environmental Science

Pradeep Kumar Sharma, Department of Environmental Science, Graphic Era (Deemed to be University), Dehradun, India

Department of Environmental Science, Professor

Vijay Tripathi, Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India

Department of Microbiology, Associate Professor

How to Cite
Kumar, R., Singh Bhoj, G., Chandra Arya, M., Karmakar, R., Sharma, P. K., & Tripathi, V. (2024). Polymer precursor method for the synthesis of zinc oxide nanoparticles: A novel approach. Environment Conservation Journal, 25(3), 710–716. https://doi.org/10.36953/ECJ.27492835

References

  1. Ajose, D.J., Abolarinwa, T.O., Oluwarinde, B.O., Montso, P.K., Fayemi, O.E., Aremu, A.O., & Ateba, C.N. (2022) Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 10,2426. DOI: https://doi.org/10.3390/biomedicines10102426
  2. Alenezi, M. R., Alzanki, T. H., Almeshal, A. M., Alshammari, A. S., Beliatis, M. J., Henley, S. J., & Silva, S. R. P. (2014) Hierarchically designed ZnO nanostructure based high performance gas sensors. RSC Adv 4,49521-49528. DOI: https://doi.org/10.1039/C4RA08732A
  3. Alenezi, M. R., Henley, S. J., & Silva, S. R. P. (2015) On-chip fabrication of high performance nanostructured ZnO UV detectors. Sci Rep 5,8516. DOI: https://doi.org/10.1038/srep08516
  4. Ali, S. R., Arya, M. C., Kalam, A., Al-Sehemi, A. G., Khan, Z., Ansari, S., & Kumar, R. (2020) Adsorption potential of zirconium-ferrite nanoparticles for phenol, 2-chlorophenol and 2-nitrophenol: thermodynamic and kinetic studies. Desalin Water Treat 179,183-196. DOI: https://doi.org/10.5004/dwt.2020.25039
  5. Ali, S. R., Kalam, A., Al-Sehemi, A. G., Khan, Z., Ansari, S., Haider, N., & Kumar, R. (2021) Comparative Adsorption of Pb2+ on Nanostructured Iron–Zirconium Oxide with Fe-to-Zr Molar Ratio of 1: 1 and 1: 2: Thermodynamic and Kinetic Studies. Arabian J Sci Eng 46,287-300. DOI: https://doi.org/10.1007/s13369-020-04715-z
  6. Ali, S. R., Kumar, R., Kadabinakatti, S. K., & Arya, M. C. (2018) Enhanced UV and visible light-driven photocatalytic degradation of tartrazine by nickel-doped cerium oxide nanoparticles. Mater Res Express 6,025513. DOI: https://doi.org/10.1088/2053-1591/aaee44
  7. Ali, S. R., Kumar, R., Kalam, A., Al-Sehemi, A. G., & Arya, M. C. (2019) Effect of Strontium Doping on the Band Gap of CeO2 nanoparticles synthesized using facile co-precipitation. Arabian J Sci Eng 44,6295-6302. DOI: https://doi.org/10.1007/s13369-018-03700-x
  8. Ali, S.S., Al-Tohamy, R., Koutra, E., Moawad, M.S., Kornaros, M., Mustafa, A.M., Mahmoud, Y.A., Badr, A., Osman, M.E., Elsamahy, T., & Jiao, H. (2021) Nanobiotechnological advancements in agriculture and food industry. Applications, nanotoxicity, and future perspectives. Sci. Total Environ. 792, 148359. DOI: https://doi.org/10.1016/j.scitotenv.2021.148359
  9. Anisha, G.S., Padmakumari, S., Patel, A.K., Pandey, A., & Singhania, R.R. (2022) Fucoidan from marine macroalgae: Biological actions and applications in regenerative medicine, drug delivery systems and food industry. Bioeng 9, 472. DOI: https://doi.org/10.3390/bioengineering9090472
  10. Anjum, S., Hashim, M., Malik, S.A., Khan, M., Lorenzo, J.M., Abbasi, B.H., & Hano, C. (2021) Recent advances in zinc oxide nanoparticles (Zno nps) for cancer diagnosis, target drug delivery, and treatment. Cancers 13, 4570. DOI: https://doi.org/10.3390/cancers13184570
  11. Bedi, P., & Kaur, A. (2015) An overview on uses of zinc oxide nanoparticles. World J Pharm Pharm Sci 4,1177-1196.,
  12. Bhattacharya, D., & Gupta, R. K. (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25, 199-204. DOI: https://doi.org/10.1080/07388550500361994
  13. Bindhu, M.R., Ancy, K., Umadevi, M., Galal, A.E., Naif, A.A.D., & Mariadhas, V.A. (2020) Synthesis and characterization of zinc oxide nanostructures and its assessment on enhanced bacterial inhibition and photocatalytic degradation. J Photochem Photobiol B Biol 210, 111965. DOI: https://doi.org/10.1016/j.jphotobiol.2020.111965
  14. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken. R., & Watkins, R. (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A 25,241-258. DOI: https://doi.org/10.1080/02652030701744538
  15. Chausali, N., Saxena, J., & Prasad, R. (2022) Recent trends in nanotechnology applications of bio-based packaging. J Agric Food Res 7,100257. DOI: https://doi.org/10.1016/j.jafr.2021.100257
  16. Chen, L.-Y., Yin, Y.-T., Chen, C.-H., & Chiou, J.-W. (2011) Influence of polyethyleneimine and ammonium on the growth of ZnO nanowires by hydrothermal method. J Phys Chem C 115, 20913-20919. DOI: https://doi.org/10.1021/jp2056199
  17. Chen, S., Wang, L., & Li, W. (2018). Enhanced photocatalytic degradation of organic dyes via mesoporous ZnO nanoparticles. J Photochem Photobiol A: Chem 365, 26-34.
  18. Chien, F. S.-S., Wang, C.-R., Chan, Y.-L., Lin, H.-L., Chen, M.-H., & Wu, R.-J. (2010) Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition. Sens Actuators B Chem 144,120-125. DOI: https://doi.org/10.1016/j.snb.2009.10.043
  19. Choi, J., Cho, S., & Park, J. (2016). Synthesis and characterization of ZnO nanoparticles for gas sensor applications. Sens Actuators B Chem 234, 133-140.
  20. Choi, S., Phillips, M.R., Aharonovich, I., Pornsuwan, S., Cowie, B.C., & Ton‐That, C. (2015) Photophysics of point defects in ZnO nanoparticles. Adv Opt Mater 3,821-827. DOI: https://doi.org/10.1002/adom.201400592
  21. Elmer, W. H., & White, J. C. (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3,1072-1079. DOI: https://doi.org/10.1039/C6EN00146G
  22. Emamifar, A. (2011) Applications of antimicrobial polymer nanocomposites in food packaging. chapter; 13. DOI: https://doi.org/10.5772/18343
  23. Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5,1447–1464. DOI: https://doi.org/10.1007/s11947-012-0797-6
  24. Fu, L., Li, Y., & Zhang, Y. (2019). Synthesis of ZnO nanoparticles with controlled morphology and their photocatalytic properties. Mater Res Bull 119, 110571.
  25. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22, 693-700. DOI: https://doi.org/10.1016/j.pnsc.2012.11.015
  26. Ifijen, I.H., Maliki, M., & Anegbe, B. (2022) Synthesis, Photocatalytic Degradation and Antibacterial Properties of Selenium or Silver Doped Zinc Oxide Nanoparticles: A Detailed Review. Open Nano 10, 100082. DOI: https://doi.org/10.1016/j.onano.2022.100082
  27. Jung, M.-H., & Chu, M.-J. (2014) Synthesis of hexagonal ZnO nanodrums, nanosheets and nanowires by the ionic effect during the growth of hexagonal ZnO crystals. J mater Chem 2,6675-6682. DOI: https://doi.org/10.1039/C4TC01132E
  28. Kazemi, A. S., Afzalzadeh, R., & Abadyan, M. (2013) ZnO nanoparticles as ethanol gas sensors and the effective parameters on their performance. J Mater Sci Technol 29, 393-400. DOI: https://doi.org/10.1016/j.jmst.2013.03.009
  29. Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop protection 35,64-70. DOI: https://doi.org/10.1016/j.cropro.2012.01.007
  30. Li, J., Zhang, Y., & Wang, H. (2021). Enhanced photocatalytic activity of ZnO nanoparticles decorated with Ag nanoparticles. Appl Surf Sci 541, 148493.
  31. Li, X. H., Xing, Y. G., Li, W. L., Jiang, Y. H., & Ding, Y. L. (2010) Antibacterial and physical properties of poly (vinyl chloride)-based film coated with ZnO nanoparticles. Food Sci Technol Int 16,225-232. DOI: https://doi.org/10.1177/1082013209353986
  32. Li, Y., Zhang, L., Huang, X., & Ma, Y. (2019). Synthesis and characterization of ZnO nanoparticles via a simple solution-combusting method. Mater Lett 248, 68-71.
  33. Liu, B., Wang, Z., Dong, Y., Zhu, Y., Gong, Y., Ran, S., Liu, Z., Xu, J., Xie, Z., Chen, D., & Shen, G. (2012) ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. J Mater Chem 22,9379-9384. DOI: https://doi.org/10.1039/c2jm16781f
  34. Liu, J., Guo, C., Li, C. M., Li, Y., Chi, Q., Huang, X., Liao, L., & Yu, T. (2009) Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem commun 11,202-205. DOI: https://doi.org/10.1016/j.elecom.2008.11.009
  35. Liu, X., Chen, N., Xing, X., Li, Y., Xiao, X., Wang, Y., & Djerdj, I. (2015) A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Adv 5, 54372-54378 DOI: https://doi.org/10.1039/C5RA05148G
  36. Liu, Z., Bai, H., & Sun, D. D. (2012) Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light. Inter J Photoenergy 2012. DOI: https://doi.org/10.1155/2012/804840
  37. Milani, N., McLaughlin, M. J., Stacey, S. P., Kirby, J. K., Hettiarachchi, G. M., Beak, D. G., & Cornelis, G. (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60,3991-3998. DOI: https://doi.org/10.1021/jf205191y
  38. Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova V., & Thompson M. (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat mater 8, 543-557. DOI: https://doi.org/10.1038/nmat2442
  39. Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015) Agricultural Nanotechnologies: What Are the Current Possibilities? Nano Today 10, 124-127. DOI: https://doi.org/10.1016/j.nantod.2014.09.009
  40. Phulpoto, I.A., Yu, Z., Qazi, M.A., Ndayisenga, F., &Yang J. (2022) A comprehensive study on microbial-surfactants from bioproduction scale-up toward electrokinetics remediation of environmental pollutants: Challenges and perspectives. Chemosphere 26, 136979. DOI: https://doi.org/10.1016/j.chemosphere.2022.136979
  41. Sabir, S., Arshad, M., & Chaudhari, S.K. (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J Article ID925494. DOI: https://doi.org/10.1155/2014/925494
  42. Sohail, Sawati, L., Ferrari, E., Stierhof, Y.-D., Kemmerling, B., & Mashwani, Z.-R. (2022) Frontiers in Plant Science 13. DOI: https://doi.org/10.3389/fpls.2022.798751
  43. Song, J., Li, Z., & Xu, W. (2017). Enhanced photocatalytic performance of ZnO nanoparticles by thermal treatment. Catal Commun 101, 14-18.
  44. Umar, A., Rahman, M. M., Vaseem, M., & Hahn, Y.-B. (2009) Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun 11, 118-121. DOI: https://doi.org/10.1016/j.elecom.2008.10.046
  45. Vega-Vásquez, P., Mosier N.S., & Irudayaraj (2020) J. Nanoscale drug delivery systems: From medicine to agriculture. Front bioeng biotechnol 8,79. DOI: https://doi.org/10.3389/fbioe.2020.00079
  46. Wang, H., Wu, Y., & Zhang, X. (2018). Influence of morphology on the photocatalytic activity of ZnO nanoparticles. J Mater Sci: Mater Electron 29, 19207-19214.
  47. Wang, Y., Liu, C., & Zhu, W. (2020). Fabrication and application of ZnO nanoparticles in sensor devices. Sens Actuators B Chem 308, 127697.
  48. Wijesinghe U., Thiripuranathar, G., Iqbal, H., & Menaa, F. (2021) Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability 13, 2004. DOI: https://doi.org/10.3390/su13042004
  49. Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006) Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi (c) 3, 3577–3581. DOI: https://doi.org/10.1002/pssc.200672164
  50. Xiong, H., Quan, Z., & Zhou, C. (2006). Hydrothermal synthesis and characterization of monodisperse zinc oxide hollow spheres. Mater Lett 60, 2859-2862.
  51. Yang, G., Zhou, Z., & Li, Y. (2021). Shape-controlled synthesis of ZnO nanoparticles and their application in drug delivery. J Colloid Interface Sci 586,179-188. DOI: https://doi.org/10.1016/j.jcis.2021.01.009
  52. Zhang, Q., Li, J., & Zhang, X. (2020). Preparation and characterization of uniform ZnO nanoparticles by a facile wet chemical method. Mater Res Bull 126, 110843.