Main Article Content

Abstract

The free-floating, filamentous cyanobacteria Spirulina platensis is highly valued and in great demand worldwide for its high-value colors and phytonutrients. These compounds find use in health foods, feed, medicines, and diagnostics. The primary objective of this work was to enhance the growth of Spirulina under both oxidative and physiological stress conditions in order to maximize the synthesis of phycocyanin and carotenoid pigments. Cultures were subjected to different concentrations of hydrogen peroxide (H2O2) and sodium chloride for varying temperatures and pH levels. Under lower concentrations of H2O2 (4mM), the maximum carotenoid content was increased, but the phycocyanin content was found to be stimulated at 10mM. Moreover, the synthesis of both pigments was shown to be highest under physiological stress circumstances (40mM and 60mM NaCl concentration) and at an optimal pH of 8-9, helped by a temperature range of 25-30℃. The experimental results demonstrate that both carotenoid and phycocyanin exhibit antioxidant properties even in the presence of oxidative stress. This suggests that the aforementioned circumstances can be applied in future investigations to extract different antioxidants from S. platensis.

Keywords

Antioxidants Carotenoid Nutritionally active compounds Phycocyanin Vitamins

Article Details

How to Cite
Kushwaha, J. S., Sharma, R., & Dwivedi, K. (2024). Production of nutritionally active compounds from Spirulina platensis under various stress conditions. Environment Conservation Journal, 25(3), 859–863. https://doi.org/10.36953/ECJ.27472828

References

  1. Abd El-Baky, H. H, (2003). Overproduction of phycocyanin pigment in “blue green” alga Spirulina and its inhibitory effect on growth of Ehrlich ascites carcinoma cells. “Journal of Medical Sciences”, 2, 222-240.
  2. Aly, M.S., & Ambers., (2011). Production and application of Spirulina platensis rich in fatty acids and vitamins. “Journal of American Science”,7(2),36-42.
  3. Awatif, M.A., Sahar, A.M., & Hayfaa, A.S., (2013). Evaluation of analgesic activity and toxicity of alkaloids in Myristica fragrans seeds in mice. “Journal of Pain Research”, 6 ,611-615. DOI: https://doi.org/10.2147/JPR.S45591
  4. Barrow, C., Shahidi, F., (2007). Marine nutraceuticals and functional foods” book, “Food Science & Technology”. DOI: https://doi.org/10.1201/9781420015812
  5. Boussiba, S., & Richmond, A., (1979). Isolation and purification of phycocyanin from Spirulina platensis (CCC540). Indian Journal of Plant Physiology,19(2),184-188. DOI: https://doi.org/10.1007/s40502-014-0094-7
  6. Devanathan, J., & Ramanathan, N., (2012). Pigment production from Spirulina platensis using seawater supplemented with dry poultry manure. Journal of Algal Biomass, 3 (4), 66-73.
  7. Gaurav, S., Manoj, K., Mohammad, I.A., & Nakuleshwar, D.J., (2014). Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. Journal of Microbial and Biochemical Technology, 6(4),202-206.
  8. Ghaeni, F.A., Hosseinzadeh, H., Sadeghnia, H.R., & Motamedshariaty, V.S., (2011). Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after Chronic Cerebral Hypoperfusion in Rats. Journal of Phytotherapy Research, 26 (3),381-386. DOI: https://doi.org/10.1002/ptr.3566
  9. Ghiselli, A., Serafini, M., Natella, F., & Scaccini, C., (2000). Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free radical biology and Medicine, 29( 11),1106-1114. DOI: https://doi.org/10.1016/S0891-5849(00)00394-4
  10. Matos, A.P.,(2018). Microalgae as a potential source of proteins. Sustainable Source, Processing and Applications.63-96. DOI: https://doi.org/10.1016/B978-0-12-816695-6.00003-9
  11. Muthu, B., Kamalanathan, A., Janarthanan, S., Kalaiyarasu T. (2020). Effect of pH on Arthrospira Platensis production. Alok Chandra Journal.9(5),2297-2305.
  12. Parwani, L., & Singh, J., (2019). Effect of temperature on nutritional values of Spirulina: useful for nutrient sustainable food preparations to combat malnutrition. proceedings of the national academy of india, section B: Biological Science,89 (4),1259-1265. DOI: https://doi.org/10.1007/s40011-018-1033-6
  13. Pinero-Estrada, J.E., Bermejo-Bescos, P., &Villar Del Fresno, A.M., (2001). Antioxidant activity of different fractions of Spirulina Platensis protean extract II. Farmaco, 56 (5-7), 497-500. DOI: https://doi.org/10.1016/S0014-827X(01)01084-9
  14. Ramírez, D., Gonzalez, R., Merino, N., RodríguezS., & Ancheta, O., (2002). Inhibitory effects of Spirulina in zymosan-induced arthritis in mice.Mediators of Inflammation. 11(2), 75-79. DOI: https://doi.org/10.1080/09629350220131917
  15. Shao, W .,Ebaid R., El-Sheekh, M., Abomohra A., & Eladel, H., (2019). Pharmaceutical applications and consequent environmental impacts of Spirulina (Arthrospira):An overview. Grasas Y Aceites,70(1),292-304. DOI: https://doi.org/10.3989/gya.0690181
  16. Sharma, R.M. & Azeez, P.A. (1988). Accumulation of copper and cobalt by blue-green algae at different temperature.International Journal of Environment Analytical Chemistry, 32,87–95. DOI: https://doi.org/10.1080/03067318808078419
  17. Yang, Y.K., Lu, H.K., Hsieh, C.C., & Hsu, J.J., (2018). Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. European journal of Applied Physiology ,98, 220-226. DOI: https://doi.org/10.1007/s00421-006-0263-0
  18. Zarrouk, C., (1966). Influence de Contribution a L’etudeD’une Cyanobacterie: Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD Thesis, University of Paris, Paris.divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler”, University of Paris. PhD Thesis, University of Paris, France, 4