Main Article Content

Abstract

In agricultural production, soil transmitted diseases pose significant challenges, resulting in reduced crop productivity, increased production costs, and diminished yields. Environmental factors such as excessive moisture and nitrogen availability can give birth to and facilitate the spread of soil-borne diseases. Agricultural production can be significantly hindered by soilborne illnesses, particularly in the context of nursery operations. Even when employing conventional methods, they often provide challenges in terms of management. Furthermore, apart from viruses and plant parasitic nematodes, soil transmitted diseases can also be caused by fungal and bacterial pathogens, including oomycete and plasmodiophorid. Major soilborne fungal infections include the species Rhizoctonia, Sclerotinia, Fusarium, and Verticillium. Oomycete pathogens, namely Phytophthora and Pythium, play a vital role. Resilient continuation structures such as chlamydospores, melanized hyphae, sclerotia, and oospores enable many soil-borne fungus to retain soil for extended durations. Ralstonia, Pectobacterium, Agrobacterium, and Streptomyces are important soil-dwelling bacterial pathogens. Soil-borne diseases often endure for an extended period on the biological remains of the host plant, either as organic matter within the soil or as autonomous organisms. Different soil parameters, such as soil texture, type, moisture, pH, temperature, ecology, and nutrient levels, influence the activity of soil-borne diseases. This review article provides a concise overview of the primary soil borne pathogens, diseases, management strategies, and approaches to soil borne diseases in large-scale crop production. This includes the system-based application of asepsis practices, legal techniques, anaerobic soil disinfestation, resistant cultivars and varieties, grafting, soil solarization, bio fumigants, soil amendments, soil steam sterilization, plant nutrients, soil fertility, soilless culture, and biological and chemical control.

Keywords

Crop management Diseases Infections Pathogen Soil borne

Article Details

How to Cite
Longjam, R., Kotiyal, A., & Johar, V. (2024). Unearthing the hidden dangers by soil borne diseases of nursery plants: A review . Environment Conservation Journal, 25(3), 921–930. https://doi.org/10.36953/ECJ.27352817

References

  1. Abad, Z. G., Abad, J. A., Cacciola, S. O., Pane, A., Faedda, R., Moralejo, E. & Değirmenci, K. (2014). Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries. Mycologia, 106(3), 431-447. DOI: https://doi.org/10.3852/12-119
  2. Alam, S.S., Sakamoto, K., Amemiya, Y. & Inubushi, K. (2010). Biocontrol of soil-borne Fusarium wilts of tomato and cabbage with a root colonizing fungus, Penicillium sp. EU0013. In: Proceedings of the 19th World Congress of Soil Science, “Soil Solutions for a Changing World”. Brisbane, Australia.
  3. Allard, S. M., Walsh, C. S., Wallis, A. E., Ottesen, A. R., Brown, E. W. & Micallef, S. A. (2016). Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Science of the Total Environment, 573, 555-563. DOI: https://doi.org/10.1016/j.scitotenv.2016.08.157
  4. Amel, A. H., Soad, M. A. & Ahmed, A. I. (2010). Activation of tomato plant defense response against fusarium wilt disease using trichoderma, harzianum and salicylic acid under greenhouse conditions. Research Journal of Agriculture and Biological Sciences, 6(3), 328-338.
  5. Arnault, I., Fleurance, C., Vey, F., Du Fretay, G. & Auger, J. (2013). Use of Alliaceae residues to control soil-borne pathogens. Industrial Crops and Products, 49, 265-272. DOI: https://doi.org/10.1016/j.indcrop.2013.05.007
  6. Ayala-Doñas, A., Cara-García, Md., Talavera-Rubia, M. & Verdejo-Lucas, S. (2020). Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting. Agronomy, 10(11), 1641. DOI: https://doi.org/10.3390/agronomy10111641
  7. Baker, K. F. & Olsen, C. M. (1960). Aerated steam for soil treatment. Phytopathology, 50(1), 82.
  8. Barbara, D. J. & Clewes, E. (2003). Plant pathogenic Verticillium species: how many of them are there? Molecular Plant Pathology, 4(4), 297-305. DOI: https://doi.org/10.1046/j.1364-3703.2003.00172.x
  9. Baysal-Gurel, F., Gardener, B. M. & Miller, S. A. (2012). Soil Borne Disease Management in Organic Vegetable Production. Organic Agri.
  10. Berg, G., Zachow, C., Lottmann, J., Götz, M., Costa, R. & Smalla, K. (2005). Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Applied and Environmental Microbiology, 71(8), 4203-4213. DOI: https://doi.org/10.1128/AEM.71.8.4203-4213.2005
  11. Bodah, E.T. (2017). Root rot diseases in plants: a review of common causal agents and management strategies. Agriculture Research and Technology, 5, 555661. DOI: https://doi.org/10.19080/ARTOAJ.2017.05.555661
  12. Bolwerk, A., Lagopodi, A. L., Lugtenberg, B. J. & Bloemberg, G. V. (2005). Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Molecular Plant-Microbe Interactions, 18(7), 710-721. DOI: https://doi.org/10.1094/MPMI-18-0710
  13. Bonanomi, G., Antignani, V., Pane, C. & Scala, F. (2007). Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology, 89(3), 311-324.
  14. Borneman, J. & Becker, J. O. (2007). Identifying microorganisms involved in specific pathogen suppression in soil. Annual Review of Phytopathology, 45, 153-172. DOI: https://doi.org/10.1146/annurev.phyto.45.062806.094354
  15. Christou, P. (2013). Plant genetic engineering and agricultural biotechnology 1983–2013. Trends in Biotechnology, 31(3), 125-127. DOI: https://doi.org/10.1016/j.tibtech.2013.01.006
  16. Dobrzyński, J., Jakubowska, Z., Kulkova, I., Kowalczyk, P. & Kramkowski, K. (2023). Biocontrol of fungal phytopathogens by Bacillus pumilus. Frontiers in Microbiology, 25, 14, 1194606. DOI: https://doi.org/10.3389/fmicb.2023.1194606
  17. Drenkhan, T., Sutela, S., Veeväli, V. & Vainio, E.J. (2022). Phlebiopsis gigantea strains from Estonia show potential as native biocontrol agents against Heterobasidion root rot and contain diverse dsRNA and ssRNA viruses. Biological Control, 167, 104837 DOI: https://doi.org/10.1016/j.biocontrol.2022.104837
  18. Fradin, E. F. & Thomma, B. P. (2006). Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo‐atrum. Molecular Plant Pathology, 7(2), 71-86. DOI: https://doi.org/10.1111/j.1364-3703.2006.00323.x
  19. Goss, E. M., Carbone, I. & Grünwald, N. J. (2009). Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Molecular Ecology, 18(6), 1161-1174. DOI: https://doi.org/10.1111/j.1365-294X.2009.04089.x
  20. Hartley, C. P. & Pierce, R. G. (1917). The control of damping-off of coniferous seedlings (No. 453). US Department of Agriculture. DOI: https://doi.org/10.5962/bhl.title.41763
  21. Howell, C. R. & Stipanovic, R. D. (1980). Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology, 70(8), 712-715. DOI: https://doi.org/10.1094/Phyto-70-712
  22. Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B. S. & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41(4), 234-242. DOI: https://doi.org/10.5941/MYCO.2013.41.4.234
  23. Karagiannidis, N., Bletsos, F. & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94(1-2), 145-156. DOI: https://doi.org/10.1016/S0304-4238(01)00336-3
  24. Katan, J. (2017). Diseases caused by soilborne pathogens: biology, management and challenges. Journal of Plant Pathology, 99(2), 305-315.
  25. Kocira, A., Staniak, M., Tomaszewska, M., Kornas, R., Cymerman, J., Panasiewicz, K. & Lipińska, H. (2020). Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review. Agriculture, 10(9), 394. DOI: https://doi.org/10.3390/agriculture10090394
  26. Kowsari, M., Motallebi, M. & Zamani, R. M. (2014). Construction of new GFP-tagged fusants for Trichoderma harzianum with enhanced biocontrol activity. Journal of Plant Protection Research, 54(2): 122-131. DOI: https://doi.org/10.2478/jppr-2014-0020
  27. La Porta, N. I. C. O. L. A., Capretti, P. I. M. T., Thomsen, I. M., Kasanen, R., Hietala A. M. & Von Weissenberg, K. (2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology, 30(2), 177-195. DOI: https://doi.org/10.1080/07060661.2008.10540534
  28. Lan, X., Zhang, J., Zong, Z., Ma, Q. & Wang, Y. (2017). Evaluation of the biocontrol potential of Purpureocillium lilacinum QLP12 against Verticillium dahliae in eggplant. BioMed Research International. DOI: https://doi.org/10.1155/2017/4101357
  29. Landis, T. D. (2013). Forest nursery pests: damping-off. Forest Nursery Notes, 2, 25-32.
  30. Louws, F., Sun, J., Whittington, H., Driver, J., Peeden, K. & Liu, B. (2012). Evaluation of fungicides and mustard meal to manage black root rot of strawberry and analysis of Pythium, Fusarium, and Rhizoctonia on strawberry roots. Phytopathology, 102(7), 72-72.
  31. Mazzola, M. & Freilich, S. (2017). Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes. Phytopathology, 107(3), 256-263. DOI: https://doi.org/10.1094/PHYTO-09-16-0330-RVW
  32. McDonald, B. A. & Stukenbrock, E. H. (2016). Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society B: Biological Science, 371(1709), 20160026. DOI: https://doi.org/10.1098/rstb.2016.0026
  33. Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M. & Tanović, B. (2017). Methods for management of soil-borne plant pathogens. Pesticidi i Fitomedicina, 32(1), 9-24. DOI: https://doi.org/10.2298/PIF1701009M
  34. Naghman, R., Bhatti, M.T., Najabat, Z., Hyder, S., Rizvi, Z. F., Gondal, A.S., Zafar, Z., Malik, S., Iqbal, R., Hafeez, A., Ali, B. & Marc, R.A. (2023). Organic amendments: a natural way to suppress phytopathogens: a sustainable approach to go green. Turkish Journal of Agriculture and Forestry, 47(5), 2. DOI: https://doi.org/10.55730/1300-011X.3113
  35. Narisawa, K., Kawamata, H., Currah, R. S. & Hashiba, T. (2002). Suppression of Verticillium wilt in eggplant by some fungal root endophytes. European Journal of Plant Pathology, 108, 103-109. DOI: https://doi.org/10.1023/A:1015080311041
  36. Olivain, C., Humbert, C., Nahalkova, J., Fatehi, J., Floriane, H. & Alabouvette, C. (2006). Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Applied Environmental Microbiology, 72(2), 1523–1531. DOI: https://doi.org/10.1128/AEM.72.2.1523-1531.2006
  37. Osuinde, M. I., Aluya, E. I. & Emoghene, A. O. (2002). Control of Fusarium wilt of tomato (Lycopersicon esculentum Mill) by Trichoderma species. Acta Phytopathologica et Entomologica Hungarica, 37(1-3), 47-55. DOI: https://doi.org/10.1556/APhyt.37.2002.1-3.6
  38. Panth, M., Hassler, S.C., Baysal-Gurel, F. (2020). Methods for Management of soilborne diseases in crop production. Agriculture, 10(1):16. DOI: https://doi.org/10.3390/agriculture10010016
  39. Paret, M. L., Cabos, R., Kratky, B. A. & Alvarez, A. M. (2010). Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Disease, 94(5), 521-527. DOI: https://doi.org/10.1094/PDIS-94-5-0521
  40. Pertot, I., Alabouvette, C., Esteve, E. H. & Franca, S. (2016). Focus Group soil-borne diseases—The use of microbial biocontrol agents against soil—borne diseases. Agriculture & Innovation.
  41. Rivard, C. L., Sydorovych, O., O'Connell, S., Peet, M. M. & Louws, F. J. (2010). An economic analysis of two grafted tomato transplant production systems in the United States. HortTechnology, 20(4), 794-803. DOI: https://doi.org/10.21273/HORTTECH.20.4.794
  42. Shafi, J., Tian, H. & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, 31(3), 446-459. DOI: https://doi.org/10.1080/13102818.2017.1286950
  43. Shishido, M., Miwa, C., Usami, T., Amemiya, Y. & Johnson, K.B. (2005). Biological control efficiency of Fusarium wilt of tomato by nonpathogenic Fusarium oxysporum Fo-B2 in Different Environments. Phytopathology, 95(9), 1072-1080. DOI: https://doi.org/10.1094/PHYTO-95-1072
  44. Song, J., Wang, Z., Wang, Y., Zhang, S., Lei, T., Liang, Y., Dai, Q., Huo, Z., Xu, K. & Chen, S. (2022). Prevalence of Carbendazin Resistance in Field Populations of the Rice False Smut Pathogen Ustilaginoidea virens from Jiangsu, China, Molecular Mechanisms, and Fitness Stability. Journal of Fungi, 8(12), 1311. DOI: https://doi.org/10.3390/jof8121311
  45. Song, W., Zhou, L., Yang, C., Cao, X., Zhang, L. & Liu, X. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection, 23(3), 243- 247. DOI: https://doi.org/10.1016/j.cropro.2003.08.007
  46. Tanaka, S., Kobayashi, T., Iwasaki, K., Yamane, S., Maeda, K. & Sakurai, K. (2003). Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Science and Plant Nutrition, 49(4), 603-610. DOI: https://doi.org/10.1080/00380768.2003.10410050
  47. Thambugala, K.M., Daranagama, D.A., Phillips, A.J.L., Kannangara, S.D. & Promputtha, I. (2020). Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Frontiers in Cellular and Infection Microbiology, 10: 604923. DOI: https://doi.org/10.3389/fcimb.2020.604923
  48. Williamson-Benavides, B. A. & Dhingra, A. (2021). Understanding root rot disease in agricultural crops. Horticulturae, 7(2), 33. DOI: https://doi.org/10.3390/horticulturae7020033
  49. Yang, T., Siddique, K.H.M., Liu, K. (2020). Cropping systems in agriculture and their impact on soil health - a review. Global Ecology and Conservation, 23, e01118. DOI: https://doi.org/10.1016/j.gecco.2020.e01118
  50. Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J. & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology. 14, 1160551. DOI: https://doi.org/10.3389/fmicb.2023.1160551