Main Article Content

Abstract

The process of modernization and industrialization has indeed heightened environmental toxicity. Deterioration of plant growth and nutrient uptake has resulted in adverse effects on human health. Heavy metals are the most prominent pollutants. Elevated levels of heavy metals can surpass essential elements, leading to deficiencies in plant nutrition and hindering growth. The objective of the study was to extract bacteria that are resistant to zinc and cadmium from fields located in close proximity to the Malviya Nagar industrial zone in Jaipur. After collecting a soil sample, colonies were isolated on nutrient agar medium with varying amounts of heavy metals. Characterization of well-defined colonies was conducted using morphological and biochemical methods, and identification of resistant bacteria was performed using advanced bacterial isolation software (ABIS). Azohydromonas lata, Kosakonia arachidis, Pseudomonas fluorescens, and Pseudomonas aeruginosa were the prominent bacterial species found to have a similarity value over 90%. Among all the bacteria that were identified, Kosakonia arachidis was selected for additional investigation due to the scarcity of studies conducted on this bacterium for the purpose of mitigating heavy metal contamination from soil. The study aimed to assess its capacity to enhance the development of mung beans in non-circulating hydroponic systems under zinc and cadmium stress conditions. The presented study demonstrates the remarkable capacity of Kosakonia arachidis to facilitate plant growth in environments characterized by zinc concentrations of 1000 ppm and cadmium concentrations of 300 ppm. This characteristic renders it a highly promising and pragmatic choice for biofertilizer utilization in plants experiencing stress caused by heavy metals.

Keywords

Bioremediation Heavy metal stress Non- circulating hydroponics Advanced bacterial identification software

Article Details

How to Cite
Saini, N., Singh, S., & Chowdhury, P. (2024). Kosakonia arachidis: Shielding Vigna radiata in metal-stressed Hydroponics. Environment Conservation Journal, 25(3), 815–823. https://doi.org/10.36953/ECJ.27962717

References

  1. Acosta, J. A., Arocena, J. M., & Faz, A. (2015). Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere, 138, 1014–1020. DOI: https://doi.org/10.1016/j.chemosphere.2014.12.050
  2. Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ –proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100(1), 6–19. DOI: https://doi.org/10.1080/02772248.2017.1413652
  3. Arnon D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant physiology, 24(1), 1–15. DOI: https://doi.org/10.1104/pp.24.1.1
  4. Arora, N. K., & Chauhan, R. (2021). Heavy metal toxicity and sustainable interventions for their decontamination. Environmental Sustainability, 4(1), 1-3. DOI: https://doi.org/10.1007/s42398-021-00164-y
  5. Arora, V., Bithel, N., & Singh, R. (2023). A Study on Heavy Metal Sources and Pollution: Challenge to Biological and Ecosystem. Bulletin of Pure & Applied Sciences- Botany, 42(1), 44–49. DOI: https://doi.org/10.48165/bpas.2023.42B.1.7
  6. Astuti, S. N. C. T., & Nugroho, A. P. (2022). Toxicity Test of Copper (Cu) and Chromium (Cr) on the Growth of Mung Bean (Vigna radiata L.) Sprouts. Journal of Biotechnology and Natural Science, 2(2), 40–48. DOI: https://doi.org/10.12928/jbns.v2i2.6961
  7. Baruah, N., Subham, C.M., Farooq, M., Gogoi, N. (2019). Influence of heavy metals on seed germination and seedling growth of wheat, pea, and tomato. Water Air Soil Pollut. 230, 273–288. DOI: https://doi.org/10.1007/s11270-019-4329-0
  8. Bhardwaj, S., Soni, R., Gupta, S. K., & Shukla, D. P. (2020). Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. Environmental Monitoring and Assessment, 192(4), 251. DOI: https://doi.org/10.1007/s10661-020-8225-2
  9. Biswas, I., & Das Mohapatra, P. K. (2023). Paraburkholderia tropica PKI7 and Kosakonia arachidis PKI8: Two newly reported tannase producing bacteria isolated from forest soil and study of their tannase producing potentiality. Notulae Scientia Biologicae, 15(1), 11379. DOI: https://doi.org/10.55779/nsb15111379
  10. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. DOI: https://doi.org/10.1016/j.heliyon.2020.e04691
  11. Chanda, S., & Dave, R. (2009). In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. African Journal of Microbiology Research, 3, 981–996
  12. Chen, Y., Huang, Z., Li, J., Su, G., & Feng, B. (2020). Complete genome sequence of Kosakonia radicincitans GXGL-4A, a nitrogen-fixing bacterium with capability to degrade TEX. Current Microbiology, 77(8), 1848–1857. DOI: https://doi.org/10.1007/s00284-020-01942-3
  13. Daud, N. H., Jayaraman, S., & Mohamed, R. (2012). Methods paper: An improved surface sterilization technique for introducing leaf, nodal and seed explants of Aquilaria malaccensis from field sources into tissue culture. Asia-Pacific Journal of Molecular Biology and Biotechnology, 20, 55–58.
  14. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. DOI: https://doi.org/10.1021/ac60111a017
  15. Gautam, Pavan Kumar and Gautam, Ravindra and Banerjee, Sushmita, Chattopadhyaya, Mahesh, & Pandey, J. (2016). Heavy metals in the environment: Fate, transport, toxicity and remediation technologies.
  16. Hama Aziz, K. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Advances, 13(26), 17595–17610. DOI: https://doi.org/10.1039/D3RA00723E
  17. Hershey, D. R. (2001). Knop’s Solution What It Seems. Science Activities: Classroom Projects and Curriculum Ideas, 38(3), 17–20. DOI: https://doi.org/10.1080/00368120109603615
  18. Ibarrolaza, A., Coppotelli, B. M., Del Panno, M. T., Donati, E. R., & Morelli, I. S. (2009). Dynamics of microbial community during bioremediation of phenanthrene and chromium (VI)-contaminated soil microcosms. Biodegradation, 20(1), 95–107. DOI: https://doi.org/10.1007/s10532-008-9203-5
  19. Joseph, T. C., Varghese, A. M., Baby, A., Reghunathan, D., Murugadas, V., & Lalitha, K. V. (2014). First draft genome sequence of a member of the genus mangrovibacter, isolated from an aquaculture farm in India. Genome Announcements, 2(6), 01209. https://doi.org/10.1128/genomeA.01209-14 DOI: https://doi.org/10.1128/genomeA.01209-14
  20. Kalaimurugan, D., Balamuralikrishnan, B., Durairaj, K., Vasudhevan, P., Shivakumar, M. S., Kaul, T., Chang, S. W., Ravindran, B., & Venkatesan, S. (2020). Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. International Journal of Environmental Science and Technology, 17(3), 1455–1462. DOI: https://doi.org/10.1007/s13762-019-02563-5
  21. Kaur, R., Sharma, S., & Kaur, N. (2019). Heavy Metals Toxicity and the Environment. Indian Institute of Pulses Research. (n.d.). https://iipr.icar.gov.in/mungbean/
  22. Khan, Z., Fan, X., Khan, M. N., Khan, M. A., Zhang, K., Fu, Y., & Shen, H. (2022). The toxicity of heavy metals and plant signalling facilitated by biochar application: Implications for stress mitigation and crop production. Chemosphere, 308(Pt 3), 136466. DOI: https://doi.org/10.1016/j.chemosphere.2022.136466
  23. Khan, Z., Khan, M.N., Zhang, K., Luo, T., Zhu, K., Hu, L. (2021). The application of biochar alleviated the adverse effects of drought on the growth, physiology, yield, and quality of rapeseed through regulation of soil status and nutrients availability. DOI: https://doi.org/10.1016/j.indcrop.2021.113878
  24. Kudoyarova, G.R., Dodd, I.C., Veselov, D.S., Rothwell, S.A., Yu-Veselov, S. (2015). Common and specific responses to availability of mineral nutrients and water. J. Exp. Bot. 66, 2133–2144, DOI: https://doi.org/10.1093/jxb/erv017
  25. Kumar, A., Sharma, N. K., . A., Shekhawat, K., & Kumawat, S. (2023). Stability Analysis for Agro-morphological and Physio-biochemical Traits in Mungbean [Vigna radiata (L.) Wilzeck] under Arid Environment. Legume Research 47(5): 723-730. DOI: https://doi.org/10.18805/LR-5058
  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
  27. Madhaiyan, M., Poonguzhali, S., Lee, J. S., Saravanan, V. S., Lee, K. C., & Santhanakrishnan, P. (2010). Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. International Journal of Systematic and Evolutionary Microbiology, 60(7), 1559–1564. DOI: https://doi.org/10.1099/ijs.0.013664-0
  28. Manara, A., DalCorso, G., Baliardini, C., Farinati, S., Cecconi, D., & Furini, A. (2012). Pseudomonas putida Response to Cadmium: Changes in Membrane and Cytosolic Proteomes. Journal of Proteome Research, 11(8), 4169–4179. DOI: https://doi.org/10.1021/pr300281f
  29. Mansoor, S., Kour, N., Manhas, S., Zahid, S., Wani, O.A., Sharma, V., Wijaya, L., Alyemeni, M.N., Alsahli, A.A., El-Serehy, H.A., Paray, B.A., Ahmad, P. (2021). Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere 271, 129458. DOI: https://doi.org/10.1016/j.chemosphere.2020.129458
  30. Melioidosis | CDC. (2022). Melioidosis | CDC. https://www.cdc.gov/melioidosis/index.html
  31. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. DOI: https://doi.org/10.1021/ac60147a030
  32. Nair, R. M., Schafleitner, R., & Lee, S. H. (2020). The Mungbean Genome. Springer Nature. http://books.google.ie/books?id=ezfSDwAAQBAJ&printsec=frontcover&dq= Global +Status+and+Economic+Importance+of+Mungbean %0D%0AThe+Mungbean+Genome,+2020%0D%0A%0D%0AISBN+:+978-3-030-20007-7%0D%0A%0D%0ARamakrishnan+ Nair,+Pepijn+Schreinemachers&hl= &cd=1& source=gbs_api
  33. Natasha, M., Shahid, M., Sardar, A., Anwar, H., Khalid, S., Shah, S. H., Shah, A. H., & Bilal, M. (2021) Effect of co-application of wastewater and freshwater on the physiological properties and trace element content in Raphanus sativus: Soil contamination and human health. Environmental Geochemistry and Health, 43(6), 2393–2406. DOI: https://doi.org/10.1007/s10653-020-00635-x
  34. Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210), 47–49. DOI: https://doi.org/10.1038/338047a0
  35. Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. International Journal of Environmental Research and Public Health, 17(7), 2204. DOI: https://doi.org/10.3390/ijerph17072204
  36. P, Krishna, Chaitanya., Santhi, Priya., Sailesh, Babu., P, Avinash., S., Asha. (2014). In-vitro Plant Regeneration Studies of Arachis hypogea L. (Ground nut) for its Heavy Metal Tolerance (K2Cr2O7).
  37. Patel, J. G., Kumar, J. I. N., Kumar, R. N., & Khan, S. R. (2015). Isolation and characterization of three and four ring pahs degrading bacteria from contaminated sites, Ankleshwar, Gujarat, India. International Journal of Environment, 4(1), 130–140. DOI: https://doi.org/10.3126/ije.v4i1.12184
  38. Rani, A. (2023). Phytotoxic Effect of Heavy Metals on Growth Parameters of Mung Bean Seeds (Vigna radiata). The Journal of Plant Science Research, 39(1), 257–269. DOI: https://doi.org/10.32381/JPSR.2023.39.01.27
  39. Razzak, S. A., Faruque, M. O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S. M. Z., & Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7, 100168. DOI: https://doi.org/10.1016/j.envadv.2022.100168
  40. Saini, N., & Gupta, S. (2017). Assessment of biochemical parameters in heavy metal-stressed crop of mung bean [Vigna radiata (L.) R. Wilczek]. American Journal of Biochemistry and Molecular Biology, 8(1), 1–9. DOI: https://doi.org/10.3923/ajbmb.2018.1.9
  41. Sanja, B., Tanja, N., Lidija, D., Dragana, D., Jasmina, N., Ivana, M., & Branka, V. (2013). Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex bor. Archives of Biological Sciences, 65(1), 375–386. DOI: https://doi.org/10.2298/ABS1301375B
  42. Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2017). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of hazardous materials, 325, 36-58. DOI: https://doi.org/10.1016/j.jhazmat.2016.11.063
  43. Sharma, N., Sharma, N., Sharma, S., Sharma, P., & Devi, B. (2023). Identification, morphological, biochemical, and genetic characterization of microorganisms. Basic Biotechniques for Bioprocess and Bioentrepreneurship, 47–84. DOI: https://doi.org/10.1016/B978-0-12-816109-8.00003-9
  44. Sindiku, O., Oluboyede, O., Oripenaye, V., Adesina, F., & Adelekan, A. (2022). Occurrence of Heavy Metal and Antibiotic Resistant Bacteria in Soils from Selected Mechanic Workshops in Ibadan Metropolis, Nigeria. Journal of Scientific Research and Reports, 104–116. DOI: https://doi.org/10.9734/jsrr/2022/v28i1030563
  45. Sorescu, I., & Stoica, C.. O. S. T. I. N. (2021) Online Advanced Bacterial Identification Software, an Original Tool for Phenotypic Bacterial Identification. Romanian Biotechnological Letters, 26(6), 3047–3053. DOI: https://doi.org/10.25083/rbl/26.6/3047-3053
  46. Srichandan, H., Pathak, A., Singh, S., Blight, K., Kim, D.-J., and Lee, S. W. (2014). Sequential leaching of metals from spent refinery catalyst in bioleaching–bioleaching and bioleaching–chemical leaching reactor: comparative study. Hydrometallurgy 150, 130–143. DOI: https://doi.org/10.1016/j.hydromet.2014.09.019
  47. Srivastava, S., & Thakur, I. S. (2007). Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation, 18(5), 637–646. DOI: https://doi.org/10.1007/s10532-006-9096-0
  48. Tatung, M., & Deb, C. R. (2023). Isolation, Characterization, and Investigation on Potential Multi-trait Plant Growth Promoting Rhizobacteria from Wild Banana (Musa itinerans) Rhizospheric Soil. Journal of Pure and Applied Microbiology, 17(3), 1578–1590. DOI: https://doi.org/10.22207/JPAM.17.3.19
  49. Ughala, E., & Osaro-Matthew, R. (2023). Antibiotic resistance pattern of bacteria isolated from spent engine oil contaminated soil. Scientia Africana, 22(1), 219–226. DOI: https://doi.org/10.4314/sa.v22i1.19
  50. Walker, C. H., Sibly, R. M., Hopkin, S. P., & D. B. P. (2012). Principles of ecotoxicology (4th ed) T. Group & F. (Eds.). CRC Press.
  51. Wang, Q., Zhou, Q., Huang, L., Xu, S., Fu, Y., Hou, D., Feng, Y., & Yang, X. (2022). Cadmium phytoextraction through Brassica juncea L. under different consortia of plant growth-promoting bacteria from different ecological niches. Ecotoxicology and Environmental Safety, 237, 113541. DOI: https://doi.org/10.1016/j.ecoenv.2022.113541
  52. Xie, C. H., & Yokota, A. (2005). Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2419–2425. Erratum in: International Journal of Systematic and Evolutionary Microbiology. (2006), 56(2), 497, DOI: https://doi.org/10.1099/ijs.0.63733-0
  53. Xie, X., Zhu, W., Liu, N., & Liu, J. (2013). Bacterial community composition in reclaimed and unreclaimed tailings of Dexing copper mine, China. African Journal of Biotechnology, 12, 4841–4849
  54. Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., & Fu, J. (2016). Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Frontiers in Plant Science, 7, 755. DOI: https://doi.org/10.3389/fpls.2016.00755
  55. Xiong, X., Liu, X., Yu, I.K.M., Wang, L., Zhou, J., Sun, X., Rinklebe, J., Shaheen, S.M., Ok, Y.S., Lin, Z., Tsang, D.C.W. (2019). Potentially toxic elements in solid waste streams: fate and management approaches. Environ. Pollut. 253, 680–707. DOI: https://doi.org/10.1016/j.envpol.2019.07.012
  56. Yusuf Fardami, A., Balarabe Ibrahim, U., Sabitu, M., Lawal, A., Ahmad Adamu, M., Aliyu, A., Lawal, I., Ibrahim Dalhatu, A., Sanusi Zainab, M., & Farouq, A. A. (2023). Mechanisms of Bacterial Resistance to Heavy Metals: A Mini Review. UMYU Scientifica, 2(1), 76–87. DOI: https://doi.org/10.56919/usci.2123.010
  57. Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A., & Li, S. (2022). Health and environmental effects of heavy metals. Journal of King Saud University – Science, 34(1), 101653. DOI: https://doi.org/10.1016/j.jksus.2021.101653