Main Article Content
Abstract
Over the past few decades, the use of different biocontrol agents in agricultural methods has resulted in significant improvements in the safety and nutritional quality of food products. Consequently, there has been an increasing interest in finding effective alternative approaches to reduce abiotic stress pressures that also promote plant growth. Trichoderma harzianum is a biocontrol agent that has attracted scientific attention due to its remarkable capacity to combat various abiotic influences. The multifaceted mechanisms of disease prevention and crop growth acceleration exhibited by the filamentous fungus T. harzianum have rendered it a highly useful biocontrol agent. Trichoderma spp. positively influence several physiological cellular processes in plants, such as photosynthesis, stomatal conductance, gas exchange, nutrient absorption and assimilation, and water expenditure efficiency. Trichoderma species promoted optimal root development and improved the absorption of mineral nutrients from the soil. In summary, the fungus Trichoderma shows significant potential as a biocontrol agent for the sustainable protection of crops and the stimulation of plant growth. The varied mechanisms of Trichoderma species make them indispensable for the management of plant diseases. The utilization of Trichoderma potential is a significant avenue for achieving robust and ecologically sound crop production, particularly in challenging circumstances, as the worldwide agricultural sector strives for substitutes to harmful pesticides and excessive use of fertilizers.
Keywords
Article Details
Copyright (c) 2024 Environment Conservation Journal
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Abirami, S., Gayathri, S. S., & Usha, C. (2022). Trichoderma as biostimulant-a plausible approach to alleviate abiotic stress for intensive production practices. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 57-84). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85577-8.00004-4
- Adhikari, P., Shrestha, S. M., Manandhar, H. K., & Marahatta, S. (2023). Effect of native trichoderma as seed treatment on germination and seedling performance of lentil under biotic and abiotic stress conditions. Saarc Journal of Agriculture, 21(2). DOI: https://doi.org/10.3329/sja.v21i2.68649
- Ahluwalia, V., Kumar, J., Sisodia, R., Shakil, N. A., & Walia, S. (2014). Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Industrial Crops and Products, 55, 202-206. DOI: https://doi.org/10.1016/j.indcrop.2014.01.026
- Akbari, S. I., Prismantoro, D., Permadi, N., Rossiana, N., Miranti, M., Mispan, M. S., ... & Doni, F. (2024). Bioprospecting the roles of Trichoderma in alleviating plants’ drought tolerance: Principles, mechanisms of action, and prospects. Microbiological Research, 283, 127665. DOI: https://doi.org/10.1016/j.micres.2024.127665
- Bahadur, A., & Dutta, P. (2022). Trchoderma spp.: their impact in crops diseases management. In Trichoderma-Technology and Uses. IntechOpen. DOI: https://doi.org/10.5772/intechopen.101846
- Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715. DOI: https://doi.org/10.1002/jsfa.6875
- Devi, R., Kaur, N., & Gupta, A. K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.).
- Fazeli-Nasab, B., Shahraki-Mojahed, L., Piri, R., & Sobhanizadeh, A. (2022). Trichoderma: Improving growth and tolerance to biotic and abiotic stresses in plants. In Trends of Applied Microbiology for Sustainable Economy (pp. 525-564). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-91595-3.00004-5
- Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., ... & Ward, M. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988-31997. DOI: https://doi.org/10.1074/jbc.M304750200
- Gusain, Y. S., Singh, U. S., & Sharma, A. K. (2014). Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress. Afr. J. Agric. Res, 9(19), 1430-1434. DOI: https://doi.org/10.5897/AJAR2014.8575
- Haggag, W. M., Abouziena, H. F., Abd-El-Kreem, F., & El Habbasha, S. (2015). Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J. Chem. Pharm. Res, 7(10), 882-889.
- Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9), 758. DOI: https://doi.org/10.3390/f10090758
- Harman, G. E., Lorito, M., & Lynch, J. M. (2004). Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Advances in applied microbiology, 56, 313-330. DOI: https://doi.org/10.1016/S0065-2164(04)56010-0
- Hermosa, R., Botella, L., Keck, E., Jiménez, J. Á., Montero-Barrientos, M., Arbona, V., ... & Nicolás, C. (2011). The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. Journal of plant physiology, 168(11), 1295-1302. DOI: https://doi.org/10.1016/j.jplph.2011.01.027
- Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3), 248-252. DOI: https://doi.org/10.1094/PHYTO.2000.90.3.248
- Jewell, M. C., Campbell, B. C., & Godwin, I. D. (2010). Transgenic plants for abiotic stress resistance. Transgenic crop plants, 67-132. DOI: https://doi.org/10.1007/978-3-642-04812-8_2
- Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of industrial microbiology and biotechnology, 35(5), 377-391. DOI: https://doi.org/10.1007/s10295-008-0327-8
- Liu, Z., Xu, N., Pang, Q., Khan, R. A. A., Xu, Q., Wu, C., & Liu, T. (2023). A salt-tolerant strain of Trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing fusarium wilt disease in cowpea. Journal of Fungi, 9(3), 304. DOI: https://doi.org/10.3390/jof9030304
- Lorito, M., & Woo, S. L. (2014). Trichoderma: a multi-purpose tool for integrated pest management. In Principles of plant-microbe interactions: microbes for sustainable agriculture (pp. 345-353). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-08575-3_36
- Mach, R., & Zeilinger, S. (2003). Regulation of gene expression in industrial fungi: Trichoderma. Applied microbiology and biotechnology, 60, 515-522. DOI: https://doi.org/10.1007/s00253-002-1162-x
- Martin, M., Morgan, J. A., Zerbi, G., & Lecain, D. R. (1997). Water stress imposition rate affects osmotic adjustment and cell wall properties in winter wheat.
- Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., ... & Brettin, T. S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature biotechnology, 26(5), 553-560. DOI: https://doi.org/10.1038/nbt1403
- Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. DOI: https://doi.org/10.1094/PHYTO-03-10-0091
- Mishra, A., Singh, S. P., Mahfooz, S., Shukla, R., Mishra, N., Pandey, S., ... & Nautiyal, C. S. (2019). External supplement of impulsive micromanager Trichoderma helps in combating CO 2 stress in rice grown under FACE. Plant Molecular Biology Reporter, 37, 1-13. DOI: https://doi.org/10.1007/s11105-018-1133-8
- Trejo,Pacheco J., Aquino-Torres, E., Reyes-Santamaría, M. I., Islas-Pelcastre, M., Pérez-Ríos, S. R., Madariaga-Navarrete, A., & Saucedo-García, M. (2022). Plant defensive responses triggered by trichoderma spp. as tools to face stressful conditions. Horticulturae, 8(12), 1181. DOI: https://doi.org/10.3390/horticulturae8121181
- Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., Moser, C., ... & Pertot, I. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC genomics, 13, 1-19. DOI: https://doi.org/10.1186/1471-2164-13-660
- Punja, Z. K. (2006). Recent developments toward achieving fungal disease resistance in transgenic plants. Canadian Journal of Plant Pathology, 28(S1), S298-S308. DOI: https://doi.org/10.1080/07060660609507387
- Rawal, R., Scheerens, J. C., Fenstemaker, S. M., Francis, D. M., Miller, S. A., & Benitez, M. S. (2022). Novel Trichoderma isolates alleviate water deficit stress in susceptible tomato genotypes. Frontiers in plant science, 13, 869090. DOI: https://doi.org/10.3389/fpls.2022.869090
- Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2012). Seed biopriming with salinity tolerant isolates of trichoderma harzmnumalleviates salt stress in rice: growth, physiological and biochemical characteristics. Journal of Plant pathology, 353-365.
- Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454(7206), 841-845. DOI: https://doi.org/10.1038/nature07190
- Seiboth, B., Gamauf, C., Pail, M., Hartl, L., & Kubicek, C. P. (2007). The d‐xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d‐galactose catabolism and necessary for β‐galactosidase and cellulase induction by lactose. Molecular microbiology, 66(4), 890-900. DOI: https://doi.org/10.1111/j.1365-2958.2007.05953.x
- Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2015). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of applied Biology, 166(2), 171-182. DOI: https://doi.org/10.1111/aab.12160
- Singh, A. K., Kumar, A., Singh, R., Saini, R., Maanju, S., Leharwan, M., & Dixit, P. S. (2023). Revolutionary Role of Trichoderma in Sustainable Plant Health Management: A Review DOI: https://doi.org/10.9734/ijecc/2023/v13i113600
- Singh, R., Anbazhagan, P., Viswanath, H. S., & Tomer, A. (2020). Trichoderma Species: A Blessing for Crop Production. Trichoderma: Agricultural Applications and Beyond, 127-158. DOI: https://doi.org/10.1007/978-3-030-54758-5_6
- Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J., 1(1), 65-79. DOI: https://doi.org/10.5640/insc.010165
- Woo, S. L., Hermosa, R., Lorito, M., & Monte, E. (2023). Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology, 21(5), 312-326. DOI: https://doi.org/10.1038/s41579-022-00819-5
- Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8(1). DOI: https://doi.org/10.2174/1874437001408010071
- Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. DOI: https://doi.org/10.1016/j.aoas.2020.09.003
References
Abirami, S., Gayathri, S. S., & Usha, C. (2022). Trichoderma as biostimulant-a plausible approach to alleviate abiotic stress for intensive production practices. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 57-84). Elsevier. DOI: https://doi.org/10.1016/B978-0-323-85577-8.00004-4
Adhikari, P., Shrestha, S. M., Manandhar, H. K., & Marahatta, S. (2023). Effect of native trichoderma as seed treatment on germination and seedling performance of lentil under biotic and abiotic stress conditions. Saarc Journal of Agriculture, 21(2). DOI: https://doi.org/10.3329/sja.v21i2.68649
Ahluwalia, V., Kumar, J., Sisodia, R., Shakil, N. A., & Walia, S. (2014). Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Industrial Crops and Products, 55, 202-206. DOI: https://doi.org/10.1016/j.indcrop.2014.01.026
Akbari, S. I., Prismantoro, D., Permadi, N., Rossiana, N., Miranti, M., Mispan, M. S., ... & Doni, F. (2024). Bioprospecting the roles of Trichoderma in alleviating plants’ drought tolerance: Principles, mechanisms of action, and prospects. Microbiological Research, 283, 127665. DOI: https://doi.org/10.1016/j.micres.2024.127665
Bahadur, A., & Dutta, P. (2022). Trchoderma spp.: their impact in crops diseases management. In Trichoderma-Technology and Uses. IntechOpen. DOI: https://doi.org/10.5772/intechopen.101846
Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715. DOI: https://doi.org/10.1002/jsfa.6875
Devi, R., Kaur, N., & Gupta, A. K. (2012). Potential of antioxidant enzymes in depicting drought tolerance of wheat (Triticum aestivum L.).
Fazeli-Nasab, B., Shahraki-Mojahed, L., Piri, R., & Sobhanizadeh, A. (2022). Trichoderma: Improving growth and tolerance to biotic and abiotic stresses in plants. In Trends of Applied Microbiology for Sustainable Economy (pp. 525-564). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-91595-3.00004-5
Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., ... & Ward, M. (2003). Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. Journal of Biological Chemistry, 278(34), 31988-31997. DOI: https://doi.org/10.1074/jbc.M304750200
Gusain, Y. S., Singh, U. S., & Sharma, A. K. (2014). Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress. Afr. J. Agric. Res, 9(19), 1430-1434. DOI: https://doi.org/10.5897/AJAR2014.8575
Haggag, W. M., Abouziena, H. F., Abd-El-Kreem, F., & El Habbasha, S. (2015). Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J. Chem. Pharm. Res, 7(10), 882-889.
Halifu, S., Deng, X., Song, X., & Song, R. (2019). Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(9), 758. DOI: https://doi.org/10.3390/f10090758
Harman, G. E., Lorito, M., & Lynch, J. M. (2004). Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Advances in applied microbiology, 56, 313-330. DOI: https://doi.org/10.1016/S0065-2164(04)56010-0
Hermosa, R., Botella, L., Keck, E., Jiménez, J. Á., Montero-Barrientos, M., Arbona, V., ... & Nicolás, C. (2011). The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. Journal of plant physiology, 168(11), 1295-1302. DOI: https://doi.org/10.1016/j.jplph.2011.01.027
Howell, C. R., Hanson, L. E., Stipanovic, R. D., & Puckhaber, L. S. (2000). Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology, 90(3), 248-252. DOI: https://doi.org/10.1094/PHYTO.2000.90.3.248
Jewell, M. C., Campbell, B. C., & Godwin, I. D. (2010). Transgenic plants for abiotic stress resistance. Transgenic crop plants, 67-132. DOI: https://doi.org/10.1007/978-3-642-04812-8_2
Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of industrial microbiology and biotechnology, 35(5), 377-391. DOI: https://doi.org/10.1007/s10295-008-0327-8
Liu, Z., Xu, N., Pang, Q., Khan, R. A. A., Xu, Q., Wu, C., & Liu, T. (2023). A salt-tolerant strain of Trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing fusarium wilt disease in cowpea. Journal of Fungi, 9(3), 304. DOI: https://doi.org/10.3390/jof9030304
Lorito, M., & Woo, S. L. (2014). Trichoderma: a multi-purpose tool for integrated pest management. In Principles of plant-microbe interactions: microbes for sustainable agriculture (pp. 345-353). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-08575-3_36
Mach, R., & Zeilinger, S. (2003). Regulation of gene expression in industrial fungi: Trichoderma. Applied microbiology and biotechnology, 60, 515-522. DOI: https://doi.org/10.1007/s00253-002-1162-x
Martin, M., Morgan, J. A., Zerbi, G., & Lecain, D. R. (1997). Water stress imposition rate affects osmotic adjustment and cell wall properties in winter wheat.
Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., ... & Brettin, T. S. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature biotechnology, 26(5), 553-560. DOI: https://doi.org/10.1038/nbt1403
Mastouri, F., Björkman, T., & Harman, G. E. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100(11), 1213-1221. DOI: https://doi.org/10.1094/PHYTO-03-10-0091
Mishra, A., Singh, S. P., Mahfooz, S., Shukla, R., Mishra, N., Pandey, S., ... & Nautiyal, C. S. (2019). External supplement of impulsive micromanager Trichoderma helps in combating CO 2 stress in rice grown under FACE. Plant Molecular Biology Reporter, 37, 1-13. DOI: https://doi.org/10.1007/s11105-018-1133-8
Trejo,Pacheco J., Aquino-Torres, E., Reyes-Santamaría, M. I., Islas-Pelcastre, M., Pérez-Ríos, S. R., Madariaga-Navarrete, A., & Saucedo-García, M. (2022). Plant defensive responses triggered by trichoderma spp. as tools to face stressful conditions. Horticulturae, 8(12), 1181. DOI: https://doi.org/10.3390/horticulturae8121181
Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., Moser, C., ... & Pertot, I. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC genomics, 13, 1-19. DOI: https://doi.org/10.1186/1471-2164-13-660
Punja, Z. K. (2006). Recent developments toward achieving fungal disease resistance in transgenic plants. Canadian Journal of Plant Pathology, 28(S1), S298-S308. DOI: https://doi.org/10.1080/07060660609507387
Rawal, R., Scheerens, J. C., Fenstemaker, S. M., Francis, D. M., Miller, S. A., & Benitez, M. S. (2022). Novel Trichoderma isolates alleviate water deficit stress in susceptible tomato genotypes. Frontiers in plant science, 13, 869090. DOI: https://doi.org/10.3389/fpls.2022.869090
Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2012). Seed biopriming with salinity tolerant isolates of trichoderma harzmnumalleviates salt stress in rice: growth, physiological and biochemical characteristics. Journal of Plant pathology, 353-365.
Rubin, E. M. (2008). Genomics of cellulosic biofuels. Nature, 454(7206), 841-845. DOI: https://doi.org/10.1038/nature07190
Seiboth, B., Gamauf, C., Pail, M., Hartl, L., & Kubicek, C. P. (2007). The d‐xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d‐galactose catabolism and necessary for β‐galactosidase and cellulase induction by lactose. Molecular microbiology, 66(4), 890-900. DOI: https://doi.org/10.1111/j.1365-2958.2007.05953.x
Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2015). Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum. Annals of applied Biology, 166(2), 171-182. DOI: https://doi.org/10.1111/aab.12160
Singh, A. K., Kumar, A., Singh, R., Saini, R., Maanju, S., Leharwan, M., & Dixit, P. S. (2023). Revolutionary Role of Trichoderma in Sustainable Plant Health Management: A Review DOI: https://doi.org/10.9734/ijecc/2023/v13i113600
Singh, R., Anbazhagan, P., Viswanath, H. S., & Tomer, A. (2020). Trichoderma Species: A Blessing for Crop Production. Trichoderma: Agricultural Applications and Beyond, 127-158. DOI: https://doi.org/10.1007/978-3-030-54758-5_6
Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J., 1(1), 65-79. DOI: https://doi.org/10.5640/insc.010165
Woo, S. L., Hermosa, R., Lorito, M., & Monte, E. (2023). Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology, 21(5), 312-326. DOI: https://doi.org/10.1038/s41579-022-00819-5
Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8(1). DOI: https://doi.org/10.2174/1874437001408010071
Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. DOI: https://doi.org/10.1016/j.aoas.2020.09.003