Main Article Content

Abstract

Air is the critical main constituent of life on the earth due to respiration phenomenon. Chandrapur city is well known for mining activity and industrial area. Thermal power plant, mining activities, factories and so many industries are established in Chandrapur district. Present study examines the ambient air quality around the thermal power plant for compliance parameters viz; Particulate Matter less than 10 microns and 2.5 microns size (i.e., PM10 and PM2.5), as well as gaseous pollutants like Sulphur Dioxide (SO2), Oxides of Nitrogen (NOX), Ozone (O3), Ammonia (NH3), specific contaminant pollutants involving Hydrocarbons (HCs) and Carbon Monoxide (CO), and heavy metals such as Nickel (Ni), Lead (Pb), Arsenic (As), and Benzo [a] pyrene (BaP) at different areas around Thermal Power Plant, Chandrapur, Maharashtra (India). The National Ambient Air Quality Standard (NAAQS) 2009 was compared to the resultant situations. The results showed that although the levels of toxins and other pollutants near the thermal power plant were designed to be below permissible limits, they are nonetheless at alarmingly high levels from a health perspective.

Keywords

Air quality Particulate Matter Gaseous Pollutants Trace Elements Specific Pollutants

Article Details

How to Cite
Manik, V. S., & Gudadhe, S. K. (2024). Assessment of air quality around the thermal power plant area, Chandrapur, Maharashtra, India. Environment Conservation Journal, 25(2), 509–515. https://doi.org/10.36953/ECJ.26772653

References

  1. Ahmed, E., Kim, K. H., Jeon, E. C., & Brown, R. J. (2015). Long term trends of methane, non methane hydrocarbons, and carbon monoxide in urban atmosphere. Science of the Total Environment, 518–519, 595–604. DOI: https://doi.org/10.1016/j.scitotenv.2015.02.058
  2. Ahamad, F. Bhutiani, R. & Ruhela, M. (2022). Environmental Quality Monitoring Using Environmental Quality Indices (EQI), Geographic Information System (GIS), and Remote Sensing: A Review. GIScience for the Sustainable Management of Water Resources, 331. (Chapter number-18, 331-348, DOI: https://doi.org/10.1201/9781003284512-21
  3. Almeida, A.A., & Lima, J.L. (1995). Determination of Cd, Cr,Cr, Ni, and Pb in industrial atmospheric particulate matter by ETA-AAS using solid samples directly from trapping filters. Atomic Spectroscopy, 16, 261-265.
  4. Arditsoglou, A., & Samara, C. (2005). Levels of total suspended particulate matter and major trace elements in Kosovo: a source identification and apportionment study. Chemosphere, 59(5), 669–678. DOI: https://doi.org/10.1016/j.chemosphere.2004.10.056
  5. Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi, S., Simpson, I. J., Blake, D. R., & Sherwood Rowland, F. (2008). Measurements of nonmethane hydrocarbons in 28 United States cities. Atmospheric Environment, 42(1), 170–182. DOI: https://doi.org/10.1016/j.atmosenv.2007.09.007
  6. Bhutiani, R., Kulkarni, D. B., Khanna, D. R., Tyagi, V., & Ahamad, F. (2021). Spatial and seasonal variations in particulate matter and gaseous pollutants around integrated industrial estate (IIE), SIDCUL, Haridwar: a case study. Environment, Development and Sustainability, 23(10), 15619-15638. DOI: https://doi.org/10.1007/s10668-021-01256-9
  7. Borbély Kiss, I., Koltay, E., Szabó, G., Bozó, L., & Tar, K. (1999). Composition and sources of urban and rural atmospheric aerosol in eastern Hungary. Journal of Aerosol Science, 30(3), 369–391. DOI: https://doi.org/10.1016/S0021-8502(98)00051-2
  8. Cheng, Y. H., & Lin, Y. L. (2010). Measurement of Particle Mass Concentrations and Size Distributions in an Underground Station. Aerosol and Air Quality Research, 10(1), 22–29. DOI: https://doi.org/10.4209/aaqr.2009.05.0037
  9. Clarke, A., Chen, J. M., Pipitsangchand, S., & Azadi-Bougar, G. (1996). Vehicular particulate emissions and roadside air pollution. Science of the Total Environment, 189–190, 417–422. DOI: https://doi.org/10.1016/0048-9697(96)05239-4
  10. Deogaonkar, S. G. (2007). The Gonds of Vidarbha. Concept Publishing Comany.
  11. Dockery, D. W., & Pope, C. A. (1994). Acute Respiratory Effects of Particulate Air Pollution. Annual Review of Public Health, 15(1), 107–132. DOI: https://doi.org/10.1146/annurev.publhealth.15.1.107
  12. Fang, G. C., Chang, C. N., Wu, Y. S., Wang, V., Fu, P. P. C., Yang, D. G., Chen, S. C., & Chu, C. C. (2000). The study of fine and coarse particles, and metallic elements for the daytime and night-time in a suburban area of central Taiwan, Taichung. Chemosphere, 41(5), 639– 644. DOI: https://doi.org/10.1016/S0045-6535(99)00507-X
  13. Fang, G. C., Wu, Y. S., Chang, S. Y., Huang, S. H., & Rau, J. Y. (2006). Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait. Atmospheric Research, 81(4), 320–333. DOI: https://doi.org/10.1016/j.atmosres.2006.01.007
  14. Finlayson-Pitts, B. J., & Pitts, J. N. (1999). Chemistry of the Upper and Lower Atmosphere. Elsevier.
  15. Gawande, U., Khanvilkar, A., Kadam, S., & Salvitthal, G. (2016). Effects of ambient air pollution on respiratory health of adults: findings from a cross-sectional study in Chandrapur, Maharashtra, India. International Journal of Research in Medical Sciences, 1546–1557. DOI: https://doi.org/10.18203/2320-6012.ijrms20161226
  16. Harrison, R. M., Smith, D., Piou, C., & Castro, L. (1997). Comparative receptor modeling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). Atmospheric Environment, 31(20), 3309–3321. DOI: https://doi.org/10.1016/S1352-2310(97)00152-0
  17. Hien, P., Binh, N., Truong, Y., Ngo, N., & Sieu, L. (2001). Comparative receptor modeling study of TSP, PM2 and PM2− PM10 in Ho Chi Minh City. Atmospheric Environment, 35(15), 2669–2678. DOI: https://doi.org/10.1016/S1352-2310(00)00574-4
  18. Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Prévôt, A. S. H. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218–222. DOI: https://doi.org/10.1038/nature13774
  19. Kumari, S., Jain, M. K., & Elumalai, S. P. (2021). Assessment of Pollution and Health Risks of Heay Metals in Particulate Matter and Road Dust Along the Road Network of Dhanbad, India. Journal of Health and Pollution, 11(29). DOI: https://doi.org/10.5696/2156-9614-11.29.210305
  20. Liu, C., Ma, Z., Mu, Y., Liu, J., Zhang, C., Zhang, Y., Liu, P.,& Zhang, H. (2017). The levels, variation characteristics, and sources of atmospheric nonmethane hydrocarbon compounds during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 17(17),10633–10649. DOI: https://doi.org/10.5194/acp-17-10633-2017
  21. Manik, V. S. and Gudadhe, S. K. (2020). Ambient Air Quality Monitoring Study around the Industrial Areas of Aurangabad, Maharashtra, India. International Research Journal of Science & Engineering. Special Issue A7: 642-646.
  22. Mungikar A.M. (2003). Biostatistical Analysis. Saraswati Printing Press, Aurangabad. 1-88.
  23. Nielsen, T., Jørgensen, H. E., Larsen, J. C., & Poulsen, M. (1996). City air pollution of polycyclic aromatic hydrocarbons and other mutagens: occurrence, sources and health effects. Science of the Total Environment, 189–190, 41–49. DOI: https://doi.org/10.1016/0048-9697(96)05189-3
  24. Panopoulou, A., Liakakou, E., Gros, V., Sauvage, S., Locoge, N., Bonsang, B., Psiloglou, B. E., Gerasopoulos, E., & Mihalopoulos, N. (2018, November 9). Nonmethane hydrocarbon variability in Athens during wintertime: the role of traffic and heating. Atmospheric Chemistry and Physics, 18(21), 16139–16154. DOI: https://doi.org/10.5194/acp-18-16139-2018
  25. Ruhela, M., Sharma, K., Bhutiani, R., Chandniha, S. K., Kumar, V., Tyagi, K., & Tyagi, I. (2022a). GIS-based impact assessment and spatial distribution of air and water pollutants in mining area. Environmental Science and Pollution Research, 1-15. DOI: https://doi.org/10.1007/s11356-021-18009-w
  26. Ruhela, M., Maheshwari, V., Ahamad, F., & Kamboj, V. (2022b). Air quality assessment of Jaipur city Rajasthan after the COVID-19 lockdown. Spatial Information Research, 30(5), 597-605. DOI: https://doi.org/10.1007/s41324-022-00456-3
  27. Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric Chemistry and Physics. Wiley-Interscience.
  28. Shen, X., Zhao, Y., Chen, Z., & Huang, D. (2013). Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmospheric Environment, 68, 297–314. DOI: https://doi.org/10.1016/j.atmosenv.2012.11.027
  29. Sohrabpour, M., Mirzaee, H., Rostami, S., & Athari, M. (1999). Elemental concentration of the suspended particulate matter in the air of Tehran. Environment International, 25(1), 75–81. DOI: https://doi.org/10.1016/S0160-4120(98)00088-9
  30. Song, P., Geng, F. H., Sang, X. F., Chan, C. Y., Chan, L. Y., & Yu, Q. (2012). Characteristics and sources of nonmethane hydrocarbons and halocarbons in wintertime urban atmosphere of Shanghai, China. Environmental Monitoring and Assessment, 184(10), 5957–5970. DOI: https://doi.org/10.1007/s10661-011-2393-z
  31. Thoma, M., Bachmeier, F., Gottwald, F. L., Simon, M., & Vogel, A. L. (2022). Mass spectrometrybased Aerosolomics: a new approach to resolve sources, composition, and partitioning of secondary organic aerosol. Atmospheric Measurement Techniques, 15(23), 7137– 7154. DOI: https://doi.org/10.5194/amt-15-7137-2022
  32. Tsai, C. J., Shih, T. S., & Sheu, R. N. (1997). Characteristics of Lead Aerosols in Different Work Environments. American Industrial Hygiene Association Journal, 58(9), 650–656. DOI: https://doi.org/10.1080/15428119791012441
  33. Vadic, V., Fungas, M., 1997. Assessment of air quality in Croatia. Environmental Research Forum (Air quality management) 7–8, 593–598.
  34. Valavanidis, A., Fiotakis, K., Vlahogianni, T., Bakeas, E. B., Triantafillaki, S., Paraskevopoulou, V., & Dassenakis, M. (2006). Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the center of Athens (Greece). Chemosphere, 65(5), 760–768. DOI: https://doi.org/10.1016/j.chemosphere.2006.03.052
  35. Wang, M., Shao, M., Chen, W., Lu, S., Liu, Y., Yuan, B., Zhang, Q., Zhang, Q., Chang, C. C., Wang, B., Zeng, L., Hu, M., Yang, Y., & Li, Y. (2015, February 11). Trends of nonmethane hydrocarbons (NMHC) emissions in Beijing during 2002–2013. Atmospheric Chemistry and Physics, 15(3), 1489–1502. DOI: https://doi.org/10.5194/acp-15-1489-2015
  36. Yennawar, P. (1970). Short Term Air Quality Surveys in Four Major Cities of India. Environmental Health, 12, 355–383.