Main Article Content

Abstract

Bioethanol production using the lignocellulosic biomass of banana viz., banana raw peel, ripe peel and pseudostem were attempted. Among the three feed stocks, maximum total reducing sugar content of 21.98% was observed in the banana ripe peel.  Pretreatments of the feed stocks with acid resulted in higher lignin removal and increased total reducing sugar content compared to the alkali treatment. Separate Hydrolysis and Fermentation (SHF), Simultaneous Saccharification and Fermentation (SSF) and Single Batch Bioconversion (SBB) were carried out for the fermentation process using Saccharomyces cerevisiae. By SSF fermentation processs, 6.63% of ethanol was produced by Saccharomyces cerevisiae from the untreated samples of banana raw peel. Enhancement of bioethanol production was done using a native cellulolytic microorganism isolated from the degraded banana samples. Using the native microorganism along with Saccharomyces cerevisiae in SBB resulted in 6.88% of bioethanol conversion. This is the first report of using native microorganism for enhanced degradation of cellulose in banana biomass for higher bioethanol production.

Keywords

Banana raw peel Bioethanol Native microorganism Saccharomyces cerevisiae Single batch bioconversion

Article Details

How to Cite
Shaji, A., Alex, S., George, A. M., Nair , D. S., B., A., & K.B. , S. (2024). Enhancement of bioethanol production from lignocellulosic biomass of banana by single batch fermentation using Saccharomyces cerevisiae and native microorganism. Environment Conservation Journal, 25(2), 347–355. https://doi.org/10.36953/ECJ.26002747

References

  1. Alex, S., Saira, A., Nair, D. S., Soni, K. B., Sreekantan, L., Rajmohan, K., & Reghunath, B. R. (2017). Bioethanol production from watermelon rind by fermentation using Saccharomyces cerevisiae and Zymomonas mobilis. Indian Journal of Biotechnology,16(4), 663-666.
  2. Alzate Acevedo, S., Díaz Carrillo, Á. J., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: a contribution to a circular economy. Molecules, 26(17), 5282. DOI: https://doi.org/10.3390/molecules26175282
  3. Benjamin, C., Singh, P. K., Dipuraj, P. S., Singh, A., Rath, S., Kumar, Y., ... & Peter, J. (2014). Bioethanol production from banana peel by simultaneous saccharification and fermentation process using cocultures Aspergillus niger and Saccharomyces cerevisiae. International Journal of Current Microbiology and Applied Sciences, 3(5), 84-96.
  4. Bennurmath, P., Bhatt, D. S., Gurung, A., Singh, A., & Bhatt, S. T. (2021). Novel green approaches toward utilization of flower waste: A review. Environment Conservation Journal, 22(3), 225-230. DOI: https://doi.org/10.36953/ECJ.2021.22327
  5. Cardona, C. A., Quintero, J. A., & Paz, I. C. (2010). Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource technology, 101(13), 4754-4766. DOI: https://doi.org/10.1016/j.biortech.2009.10.097
  6. Danmaliki, G. I., Muhammad, A. M., Shamsuddeen, A. A., & Usman, B. J. (2016). Bioethanol production from banana peels. IOSR Journal of Environmental Science, Ver. II, 10(6), 56-62.
  7. Das, S., & Dash, H. R. (2014). Microbial biotechnology-A laboratory manual for bacterial systems. Springer. DOI: https://doi.org/10.1007/978-81-322-2095-4
  8. Derman, E., Abdulla, R., Marbawi, H., Sabullah, M. K., Gansau, J. A., & Ravindra, P. (2022). Simultaneous saccharification and fermentation of empty fruit bunches of palm for bioethanol production using a microbial consortium of S. cerevisiae and T. harzianum. Fermentation, 8(7), 295. DOI: https://doi.org/10.3390/fermentation8070295
  9. Dhanraj, B. (2014). Cost effective method for production of ethanol from sugar beet and its estimation by modified dichromate method. Central European Journal of Experimental Biology, 3, 9-12.
  10. Hamzah, M. A., Alias, A. B., & Ahmad, N. E. (2019). Production of biofuel (bioethanol) from fruitwaste: Banana peels. International Journal of Engineering and Advanced Technology, 9(1), 5897-5901. DOI: https://doi.org/10.35940/ijeat.A3024.109119
  11. Itelima, J., Onwuliri, F., Onwuliri, E., Onyimba, I., & Oforji, S. (2013). Bioethanol production from banana, plantain and pineapple peels by simultaneous saccharification and fermentation process. International Journal of Environmental Science and Development, 4(2), 213-216 DOI: https://doi.org/10.7763/IJESD.2013.V4.337
  12. Kulkarni, S. J., Baravkar, K., & Goswami, A. K. (2022). Ethanol production from banana peels by Fermentation process using yeast. International Journal of Green Chemistry, 8(1), 1-8.
  13. Le Tan, N. T., Dam, Q. P., Mai, T. P., & Nguyen, D. Q. (2021). The combination of acidic and alkaline pretreatment for a lignocellulose material in simultaneous saccharification and fermentation (SSF) process. Chemical Engineering Transactions, 89, 43-48.
  14. Lindsay, H. (1973). A colorimetric estimation of reducing sugars in potatoes with 3,5-dinitrosalicylic acid. Potato Research, 16(3), 176-179. DOI: https://doi.org/10.1007/BF02356048
  15. Lokapirnasari, W. P., Nazar, D. S., Nurhajati, T., Supranianondo, K., & Yulianto, A. B. (2015). Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia. Veterinary world, 8(3), 367. DOI: https://doi.org/10.14202/vetworld.2015.367-371
  16. Lu, F., Wang, C., Chen, M., Yue, F., & Ralph, J. (2021). A facile spectroscopic method for measuring lignin content in lignocellulosic biomass. Green Chemistry, 23(14), 5106-5112. DOI: https://doi.org/10.1039/D1GC01507A
  17. Mataix, E., & De Castro, M. L. (2000). Simultaneous determination of ethanol and glycerol in wines by a flow injection-pervaporation approach with in parallel photometric and fluorimetric detection. Talanta, 51(3), 489-496. DOI: https://doi.org/10.1016/S0039-9140(99)00297-0
  18. Santiago, B., Moreira, M. T., Feijoo, G., & González-García, S. (2022). Environmental comparison of banana waste valorization strategies under a biorefinery approach. Waste Management, 142, 77-87. DOI: https://doi.org/10.1016/j.wasman.2022.02.005
  19. Santos, F., Eichler, P., de Queiroz, J. H., & Gomes, F. (2020). Production of second-generation ethanol from sugarcane. In Sugarcane biorefinery, technology and perspectives.195-228. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-814236-3.00011-1
  20. Sawarkar, A. N., Kirti, N., Tagade, A., & Tekade, S. P. (2022). Bioethanol from various types of banana waste: A review. Bioresource Technology Reports, 18, 101092. DOI: https://doi.org/10.1016/j.biteb.2022.101092