Main Article Content

Abstract

The  color and chemical  oxygen demand arising from  Acid  Blue  I,   Rhodamine B and textile industry wastewater  containing vinyl sulphone-based  reactive dye are treated  using TiO,/ UV technique.  Color is found to be removed substantially during first one hour of irradiation of Acid Blue I  and  Rhodamine B systems.  The  rate  of  color  removal  from  textile  dyeing  industry wastewater  in  an  order  of  magnitude  lower  than  that  of  Acid  Blue  I   and  Rhodamine  B. Simultaneously,  the overall COO removal efficiencies  under aerated condition are found to  be 60% for Acid Blue I/ TiO in 2 hours, 90 % for Rhodamine  B/TiO,  in 4-5 hours and 45 % for wastewater/  TiO, in 3' hours.  The supplied air is found  to  enhance rate  of  color and COD removals.   The   results   suggested   that   some   stable   intermediates   are   formed   during phoooxidation of  these  dyes  and the  photocatalytic  degradation of  reactive  dye  containing wastewater is relatively slower.

Keywords

Photocatalysis Color COD Removal

Article Details

How to Cite
Dhodapakar, R., Rao, N., Pande, S. P., & Kaul, S. N. (2000). Photocatalytic Route for Reduction of Color and Chemical Oxygen Demand from Dye-Containing Wastewater. Environment Conservation Journal, 1(1), 13–20. https://doi.org/10.36953/ECJ.2000.010103

References

  1. APHA-AWWA-WPCF 1989. Standard Methods for the Examination of Water and Wastewater 17" edition. American Ppublic Health Association, Washington, D.C.
  2. Dhodapakar, R. S., Rao, N. N.. Pande, S. P., and Kaul, S. N. 1999. Photocatalytic destruction of organic pollutants in water.In: Advances in Wastewater Treatment. Tech. Sci. Publications. pp 451.
  3. lbusuki Kutsuna, S. Takeuchi, K., Shin Kali K., Sasamoto, T. and Miyamoto, M. 1993. Removal of low concentration air pollutants through photoassisted heterogeneous catalysis. In: D. F. Ollis and H. AI-Ekabi (eds) Photocatalytic Purification and Treatment of Water and Air., Elsvier, Amsterdam, pp. 375-386.
  4. Kesselman, J.M., Shreve, G. A., Hoffman, M. R. and Lewis, N. S. 1994. Flux matching conditions at Tio, photoelectrodes : Is interfacial electron transfer to O, rate limiting in Tio, - Catalyzed photochemical degradation of organics. J. Phys. Chem., 98, 13385-13395.
  5. Matthews, R. W. 1991. Photooxidative degradation of colored organics in water using supported catalysts. TiO, on sand. Water Res. 25, 1169-1177.
  6. Ollis, D. F. I 985. Contaminant degradation in water -- Heterogenous photocatalysis degrades halogenated hydrocarbon contaminants. Environ. Sci. Technol, 19, 480.
  7. Rao, N. N. and Dubey. $. 1997. TiO, catalyzed photodegradation_ofreactive Orange 84 and Alizarin red S biological stain. Ind J. Chem. Technol. 4, 1-6.
  8. Rao, N. N. and Dubey, S. 1998. Photocatalytic degradation of reactive Orange 84 in dye house effluent using single pass reactor. Studies in surf. Sci. and Catalysis. 113, 1045-1050.
  9. Schwitzgebel, J, Ekerdt, J. G., Gerischer, H. and Heller, A. 1995. Role of the oxygen molecule and of the photogenerated electron in TiO, photocatalysed air oxidation reactions. J. Phys. Chem, 99, 5633-5638.
  10. Tinuchi, L., Borgarello, E., Minero, C. and Pelizetti, E. 1993. Treatment of industrial wastewater by photocatalytic oxidation on Tio, In: D. F. Ollis and H. AI-Ekabi, (Eds) Photocatalytic Purification and Treatment of Water and Air. Elsevier Amsterdm pp. 585-594.
  11. Zhao, J., Taixing Wu, Kaiqun Wu, Oikawa, K., Hidaka, H. and Serpone, N. 1998. Photoassisted degradation of dye pollutants 3 degradation of the cation dye Rhodamine B in aqueous anionic surfactants/ Tio, dispersions under visible light irradiation: Evidence for the need of substrate adsorption on Tio, particles. Environ. Sci. Technol. 32, 2394.