Main Article Content

Abstract

Photochemic al  reduction  of  Cr  (VI)  i nto  Cr  (III)  has  been  reported  earlier  in  the  presence  of  glycerol (Yurkow  et al.,  2002).  The  introduction  of  EDTA  salt  in  the  reagent  that  is  prepared  to  have  an  incomplete reaction  enhances  the  rate  of  reduction  as  it  enhances  th e  ionic  strength  considerably.  The  acid   and  a carbon  source  was  provided  through  the  reaction  of  glycerol  and  concentrated  Sulphuric  acid.  The  reagent thus  formulated  is  efficient  enough  to  reduce  the  hexavalent  chromium  as  evident  by its  appearance  in  the solut i on .

Keywords

Glycerol containing solution Ionic strength Rate of reduction reducing reagent

Article Details

How to Cite
Srivastava, J., Chandra, H., Singh, A., Rai, N., & Chauhan, S. (2007). Reduction of chromium (VI) by the application of a strong reducing reagent. Environment Conservation Journal, 8(3), 1–4. https://doi.org/10.36953/ECJ.2007.080302

References

  1. Yurkow, E. J., Hong, J., Min, S. and Wang Su*; 2002. Photochemical reduction of hexavalent chromium in glycerol-containing solutions. Environmental pollution , 117:1-3 DOI: https://doi.org/10.1016/S0269-7491(01)00297-4
  2. Chen, H. and Cutright, T., 2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere, 45:21 – 28. DOI: https://doi.org/10.1016/S0045-6535(01)00031-5
  3. Chou, I. N., 1989. Distinct cytoskeleton injuries induced by As, Cd, Co, Cr, and Ni compounds. Biomed. Environ. Sci., 2:358-365.
  4. Frank C. Lu, 1996. Basic Toxicology. Third Edition, published at Taylor and Francis publishers USA.
  5. Gibbs, H. J., Lees, P. S., Pinsky, P. F., Rooney, B. C., 2000. Lung Cancer among workers in chromium chemical production. Am. J. Ind. Med., 38 (2): 115 – 126. DOI: https://doi.org/10.1002/1097-0274(200008)38:2<115::AID-AJIM1>3.0.CO;2-Y
  6. Headlam, H.A. and Lay, P.A., 2001. EPR spectroscopic studies of the reduction of chromium (VI) by methanol in the presence of peptides Formation of long lived chromium (V) peptide complexes. Inorg. Chem., 40 (1):78 – 86. DOI: https://doi.org/10.1021/ic000299m
  7. Ignaz J. Buerge and Stephan J. Hug; 1998. Influence of Organic Ligands on Chromiumn (VI) Reduction by Iron (II). Environ. Sci. Technol., 32:2092 – 2099. DOI: https://doi.org/10.1021/es970932b
  8. Jeremy F., Joshua C., David F., Ken K., Bruce B. and Maxim B. Non-Metabolic reduction of Cr(VI) by bacterial surfaces under nutrient absent conditions. Journal of conference abstracts, 5(2): 396.
  9. Calder, L.M., 1988. In Chromium in the Natural and Human Environments; Nriagu, I.O., Nieboer, E. Eds.; Wiley: New York, pp 215 – 229.
  10. Bartlett, R. J. and James, B. R., 1988. In Chromium in the Natural and Human Environments; Nriagu, I.O., Nieboer, E. Eds.; Wiley: New York, pp 267 – 304.
  11. Palmer, C.D.; Wittbrodt, P.R., 1991. Processes affecting the remediation of chromium contaminated sites. Enviorn. Health Perspectives 92: 25-40. DOI: https://doi.org/10.1289/ehp.919225