Main Article Content

Abstract

In  the  present study,  gram-negative  (Escherichia coli K-12)  bacterial biomembrane  involvement was studied  in  the presence of modulating  factors such as EDTA, Mg   ions  and EDTA and Mg'  ions in  combination.  The  release  of proteins  and  their  involvement during the  transport of 9-Lactams namely  Ceftriaxone  and  Cefazolin  were  also  studied.  The  broader  applications   of Ceftriaxone  for pharmaceutical  implications  offer  greater  advantage as  compared  to pre-existing  3-Lactams.  Due to the  availability  of more signal  moi.:cules  in the membranes  there  is  enhanced  toxicity  at 5  mM EDTA  concentration,  and  easy  entrapment of antibiotics, thus  enhanced sensitivity  levels.  A concentration  of 15  mM Mg  ions  was found  to be toxic  for E.coli  whereas  it exhibited  luxuriant growth with decreasing  Mg'  ion  concentration  under antibiotic  stress. On the contrary, when 5  mM      • EDTA is  treated  in combination  wnth  Mg,  it  attributed  reduced  signals  available  on the membrane surface  therefore,  reduced  drug  sensitivity.  To identify  the  involvement  of specific  proteins  and  to know the site of proteins  released which are directly or indirectly involved in transport  of antibiotics across  the  biological  membrane,  the  protein  release  was  monitored  from  intact  cells,  as well  as, membrane vesicles derived from E.colt cells and studied upto a level of molecular weight determination and  measured   by using  a high-pressure  liquid  chromatography  (HPLC).  The  study confirms  the induction of certain  stress  signal  proteins  from the outer  membrane,  thereby  rendering the bacteria more  susceptible to therapy.

Keywords

High pressure liquid chromatography CEF- Ceftriaxone Sodium CEZ-Cefazolin Sodium Outer Membrane Proteins- OMPs

Article Details

How to Cite
Arora, B. (2009). Stress induced alterations in the outer membrane of Escherichia coli K- 12 strain. Environment Conservation Journal, 10(1&2), 1–8. https://doi.org/10.36953/ECJ.2009.101201

References

  1. Alfredo, G. Torres, Yongguo, Li, Christopher, B. Tutt, Lijun Xin, Tonyia Eaves-Pyles and Lynn, Soong, 2006. Outer Membrane Protein A of E. coli 015 7: H7 Stimulates Dendritic Cell Activation. Infection and Immunity, 74(5): 2676-2685. DOI: https://doi.org/10.1128/IAI.74.5.2676-2685.2006
  2. Ananthan, S. and Subha, A., 2005. Cefoxitin resistance mediated by loss of a porin in clinical strains of Klebsiella pneumoniae and Escherichia coli, Indian Journal of Medical Microbiology, 23(1): 20-23. DOI: https://doi.org/10.1016/S0255-0857(21)02706-7
  3. Dela Vega, A.L. and Delcour, A.H., 1995. Cadaverine induces closing of E.coli porins. EMBO J, 14: 6058-6065. DOI: https://doi.org/10.1002/j.1460-2075.1995.tb00294.x
  4. Hughes, M.N. and Poole, R.K., 1989. Metals and microorganisms. Chapman and Hall, London, New York. pp: 412.
  5. Koning, W.N. and Kaback, H.R., 1973. Anaerobic Transport in E.coli membrane vesicles. Proc. Natl, Sci., 70: 3376-3381. DOI: https://doi.org/10.1073/pnas.70.12.3376
  6. Leive, L., 1968. Studies on the permeability change produced in coliform bacteria by EDTA. J. Biol. Chem., 243: 2373-2380. DOI: https://doi.org/10.1016/S0021-9258(18)93484-8
  7. Matzushita, K. Adachi, 0. Shnagawa, E. and Ameyama, M., 1978. Isolation and characterization of outer and inner membranes from Pseudomonas aeruginosa and effect of EDTA on the membranes. J. Biol. Chem., 83: 171-181. DOI: https://doi.org/10.1093/oxfordjournals.jbchem.a131888
  8. Nikaido, H., 1985. Role of permeability barriers in resistance to beta-Lactam antibiotics. Pharmacol Ther J., 27(2): 197-231. DOI: https://doi.org/10.1016/0163-7258(85)90069-5
  9. Nikaido, H., 1994. Porins and specific diffusion channels in bacterial outer membranes. J. Biol Chem., 269: 3905-3908. DOI: https://doi.org/10.1016/S0021-9258(17)41716-9
  10. Nikaido, H., 2003. Molecular basis of bacterial outer membrane permeability Revisited. Mol. Biol. Rev., 67(4): 593-656. DOI: https://doi.org/10.1128/MMBR.67.4.593-656.2003
  11. Nikaido, H., Liu, W., Rosenberg, E.Y., 1990. Outer membrane permeability and beta-Lactamase stability of dipolar ionic cephalosporins containing methoxyimino substituents. Antimicrob Agents Chemother, 34(2): 337-342. DOI: https://doi.org/10.1128/AAC.34.2.337
  12. Nikaido, H. Vaara, M., 1985. Molecular basis of bacterial outer membrane permeability. Microbial Rev., 49(1): 1-32. DOI: https://doi.org/10.1128/mr.49.1.1-32.1985
  13. Russel, A.D., and Chopra, I., 1990. Understanding Anti bacterial action and resistance Ellis Horwood series in pharmaceutical technology, England (U.K.). pp:19-227.
  14. Spencer, M.E. and Guest, J.R., 1973. Isolation and properties of fumarate reductase mutants of E.coli. J. Bacteriol.,114: 563-570. DOI: https://doi.org/10.1128/jb.114.2.563-570.1973
  15. Warburg, 0. and Christian, W., 1941. Isolation and crystallization of enolase. Biochem J., 3(10): 384-421.
  16. Yamada, J., Tatsuguchi, K. and Watanable, T., 1978. Effect of trialkyltin chlorides on microbial growth. Agric. Biol. Chem., 42: 1167-1172. DOI: https://doi.org/10.1271/bbb1961.42.1167
  17. Yohannes, E., Barnhart, D.M., Slonczewski, J.L., 2004. pH-dependent catabolic protein expression during anaerobic growth of, Escherichia coli K-12. J. Bacteriol., 186:192-199. DOI: https://doi.org/10.1128/JB.186.1.192-199.2004
  18. Yohannes, E., Thurbur, A.E., Wilks, J.C., Tate, D.P. and Slonczewski, J.L., 2005. Polyamine stress at high