Polyphenolic profiles in edible Annona spp. using high-performance liquid chromatography (HPLC-MS/MS)

##plugins.themes.academic_pro.article.main##

Manjunath J Shetty
K. R Vasudeva
T Sakthivel
G. J Suresh
H. C Krishna
Vishnuvardhana K.
Anil Kumar S

Abstract

Polyphenolic compounds of fruits of various plant species play an important role in physiological functions related to human health. Polyphenols have important biological activities like antioxidant activity which helps in normal functioning of human body. The objective of this study was to investigate the profiles of polyphenolic compounds in different edible Annona spp. fruits. Total of eighteen identified individual phenolic compounds were found, among which p-coumaric acid (321.53-90.17µg g-1FW), o-coumaric acid (70.80-19.00µg g-1FW), 2,4-dihydroxybenzoic acid (39.49-10.43µg g-1FW), caffeic acid (35.26-3.43µg g-1FW), gentisic acid (24.69-10.46µg g-1FW), protocatechuic acid (17.04-4.23µg g-1FW), t-cinnamic acid (22.68-3.93µg g-1FW) and ferulic acid (21.78-3.43µg g-1FW) were abundant in annona fruits while benzoic acid (23.28-4.61µg g-1FW), p-hydroxybenzoic acid (1.79-0.31µg g-1FW), salicylic acid (6.00-2.40µg g-1FW), 3-hydroxybenzoic acid (6.05-0.88µg g-1FW), vanillic acid.  (19.13-2.16µg g-1FW), gallic acid (15.88-2.74µg g-1FW), ellagic acid (1.12-0.20µg g-1FW), syringic acid (0.78-0.34µg g-1FW) and sinapic acid (2.16-0.79µg g-1FW) were limited. However, chlorogenic acid was not detected. The results obtained in this study will furnish a better knowledge of the polyphenolic composition in annona fruits.

##plugins.themes.academic_pro.article.details##

How to Cite
Shetty, M. J., Vasudeva, K. R., Sakthivel, T., Suresh, G. J., Krishna , H. C., K., V., & Kumar S, A. . (2020). Polyphenolic profiles in edible Annona spp. using high-performance liquid chromatography (HPLC-MS/MS). Environment Conservation Journal, 21(3), 201-208. https://doi.org/10.36953/ECJ.2020.21325

References

  1. Almeida, M. M. B., de Sousa, P. H. M., Arriage, A. M. C., do Prado, G. M., Magalhaes, C. E. C., Maia, G. A. and Lemos, G. A. 2011. Bioactive compounds and antioxidant activity of fresh exotic fruits from north-eastern Brazil. Food Research International, 44: 2155-2159.
  2. Chatrou, L. W., Pirie, M .D., Erkens, R. H. J., Couvreur, T. L. P., Neubig, K. M., Abbott, J. R., Mols, J. B., Maas, J. W., Saunders, R. M. K. and Chase, M. W., 2012. A new sub familial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Botanical Journal of the Linnean Society, 16(9): 5–40.
  3. Dembitsky, V. M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S. and Gorinstein, S. 2011. The multiple nutrition of some exotic fruits: Biological activity and active metabolites. Food Research International, 44: 1671-1701.
  4. Giusti, M., Rodriguez-Saona, L., Griffin, D. and Wrolstad, R. 1999. Electrospray and tanden mass spectroscopy as tools for anthocyanin characterization. Journal of Agricultural and Food Chemistry, 47(12): 4657-64.
  5. Jagtap, U. B. and Bapat, V. A. 2015. Phenolic composition and antioxidant capacity of wine prepared from custard apple (Annona squamosa L.) fruits. Journal of Food Processing and Preservation, 39(3): 175-182.
  6. Jimenez, V. M., Gruschwitz, M., Schweiggert, R. M., Carle, R. and Esquivel, P. 2014. Identification of phenolic compounds in soursop (Annona muricata) pulp by high-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection. Food Research International, 65(2): 42-46.
  7. Lee, P. R., Tan, R. M., Yu, B., Curran, P. and Liu, S. Q. 2003. Sugars, organic acids and phenolic acids of exotic seasonable tropical fruits. Nutrition & Food Science, 43(9): 267-276.
  8. Loizzo, M. R., Tundis, R., Bonesi, M., Menichini, F., Mastellone, V., Avallone, L. and Menichini, F. 2012. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill. (Cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. Journal of Food Composition and Analysis, 25: 179-184.
  9. Revilla, I., Magarino, S. P., Gonzalez-SanJose, M. L. and Beltran, S. 1999. Identification of anthocyanin derivatives in grape skin extracts and red wines by liquid chromatography with diode array and mass spectrometric detection. Journal of Chromatography, 847(9): 83-90.
  10. Seifried, H. E., Anderson, D. E., Fisher, E. I. and Milner, J. A., 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. Journal of Nutritional Biochemistry, 18: 567–579.
  11. Sousa, P. M., Elias, S. T., Imenoni, L. A., Paula, J. E., Gomes, S. M. and Guerra, E. N. S. 2012. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity. Plos One, 7(11): 1-7.
  12. Vagiri, M., Ekholm, A. Andersson, S. C., Johansson, E. and Rumpunen, K. 2012. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant ( Ribes nigrum L.). Journal of Agricultural and Food Chemistry, 60(7): 105-110.
  13. Weidner, S., Amarowicz, R., Karamac, M. and FrTczek, E. 2000. Changes in endogenous phenolic acids during development of Secale cereale caryopses and after dehydration treatment of unripe rye grains. Plant Physiology and Biochemistry, 38(3): 595-602.