Main Article Content

Abstract

Two experiments were performed to study of the effects of social interaction on photoperiodic induction in house sparrows. In the first experiment, short-day pretreated birds were exposed to stimulatory long day lengths (16L: 8D) for 4 weeks. The first set had a group of male and female birds kept individually in cages so that they could not see to each other. The second was similar to the first but the cages were separated by a transparent partition so that birds could see each other. In third four male and four female were kept together in the same cage. The second experiment differed from the experiment 1 in the sense that it housed individual birds and also included another variable, the noise. Birds were disturbed by the sound of a ringing bell for 15 minutes at three times of the day, ZT4, ZT8 and ZT12. Observations on body mass and gonad size were made at the beginning and end of the experiment. The pairing in the environment appears to affect the gonadal growth in females but not in males.

Keywords

Social stimuli Day length Gonadal growth Body mass Zeitgeber time

Article Details

How to Cite
Anushi, & Bhardwaj, S. K. (2010). Role of social stimuli in the photoperiodic induction. Environment Conservation Journal, 11(3), 153–160. https://doi.org/10.36953/ECJ.2010.110329

References

  1. Amir, S. and Stewart, J., 1996. Resetting of the circadian clock by a conditioned stimulus. Nature, 379: 542-545. DOI: https://doi.org/10.1038/379542a0
  2. Andersson, M., 1994. Sexual Selection. Princeton Univ. Press, Princeton, NJ.
  3. Antle, M.C. and Mistlberger, R.E., 2000. Circadian clock reseting by sleep deprivation in the Syrian hamster. J. Neuro Sci., 20: 9326-9332. DOI: https://doi.org/10.1523/JNEUROSCI.20-24-09326.2000
  4. Archawaranon, M., Dove, L. and Wiley, R.H., 1991. Social inertia and hormonal control of aggression and dominance in white-throated sparrows. Behav., 118: 42–65. DOI: https://doi.org/10.1163/156853991X00193
  5. Aschoff, J., 1955. Jahresperiodik der Fortpflanzung bei Warmblütern. Stud. Gen. 8: 742-776.
  6. Brenowitz EA, Perkel DJ, and Osterhout, L., 2010 Language and birdsong: Introduction to the special issue. Brain Lang., 115: 1–2. DOI: https://doi.org/10.1016/j.bandl.2009.12.002
  7. Brzoska, J. and Obert, H.J., 1980. A coustic signals influence the hormone production of the testes in the grass frog. J. Comp. Physiol., 140: 25-29. DOI: https://doi.org/10.1007/BF00613744
  8. Burmeister, S. and Wilczynski, W., 2000. Social signals influence hormones independently of calling behavior in the Treefrog, Hyla cinerea. Horm. Behav., 38: 201-209. DOI: https://doi.org/10.1006/hbeh.2000.1605
  9. Cheng, M.F., 1986. Female cooing promotes ovarian development in ring doves. Physiol. Behav., 37: 371-374. DOI: https://doi.org/10.1016/0031-9384(86)90248-9
  10. Davidson, A.J. and Menaker, M., 2003. Birds of a feather clock together B sometimes: Social synchronization of circadian rhythms. Current Opinion in Neurobiology., 13: 765-769. DOI: https://doi.org/10.1016/j.conb.2003.10.011
  11. Delville, Y., Salon. J., Hendrick, J.C. and Baltha-Zart, J., 1984. Effect of the presence of females on the pituitary-testicular activity in male Japanese quail, Coturnix coturnix japonica. Gen. Comp. Endocrinol., 55: 295-305. DOI: https://doi.org/10.1016/0016-6480(84)90115-1
  12. Dickinson, J., Haydock, J., Koenig, W., Stanback, M. and Pitelka, F., 1995. Genetic monogamy in single-male groups of acorn woodpeckers, Melanerpes formicivorus. Mol. Ecol., 4: 765–769. DOI: https://doi.org/10.1111/j.1365-294X.1995.tb00277.x
  13. Fox, H.E., White, S.A., Kao, M.H.F. and Fernald, R.D., 1997. Stress and dominance in a social fish. J. Neurosci., 17(16): 6463-6469. DOI: https://doi.org/10.1523/JNEUROSCI.17-16-06463.1997
  14. Francis, R.C., Soma, K. and Fernald, R.D., 1993. Social regulation of the brain-pituitary-gonadal axis. Proc. natl. Acad. Sci., USA 90: 7794-7798. DOI: https://doi.org/10.1073/pnas.90.16.7794
  15. Goel, N. and Lee, T. M., 1995a. Sex differences and effects of social cues on daily rhythms following phase advances in Octodon degus. Physiol. Behav., 58: 205-213. DOI: https://doi.org/10.1016/0031-9384(95)00051-J
  16. Goel, N. and Lee, T. M., 1995b. Social cues accelerate re-entrainment of circadian rhythms in diurnal female Octodon degus (Redntia-Octontidae). Chronobiol. Int., 12: 311-323. DOI: https://doi.org/10.3109/07420529509057280
  17. Governale, M.M. and Lee, T.M., 2001. Olfactory cues accelerate re-entrainment following phase shifts and entrain free-running rhythms female Octodon degus (Rodentia). J. Biol. Rhythms., 16: 489-501. DOI: https://doi.org/10.1177/074873001129002169
  18. Gudermuth ,D.F., Butler. W.R. and Johnston, R.E., 1992. Social influences on reproductive development and fertility in female Djungarian hamsters, Phodopus Campbelli. Horm. Behav., 26: 308-329. DOI: https://doi.org/10.1016/0018-506X(92)90002-D
  19. Haig, S.M., Walters, J.R. and Plissner, J.H., 1994. Genetic evidence for monogamy in the cooperatively breeding red-cockaded woodpecker. Behav. Ecol. Sociobiol., 34: 295- 303. DOI: https://doi.org/10.1007/BF00183480
  20. Hartman, V. and Crews, D., 1996. Sociosexual stimuli affects ER- and PR-mRNA abundance in the hypothalamus of all female whiptail lizard. Brain. Res., 741: 344-347. DOI: https://doi.org/10.1016/S0006-8993(96)01087-6
  21. Hegner, R.E. and Wingfield, J.C., 1987. Effect of experimental manipulation of testosterone levels on parental investment and breeding success in male house sparrows. Auk.,104: 462-469. DOI: https://doi.org/10.2307/4087545
  22. Hinde, R.A. and Steel, E., 1978. The influence of daylength and male vocalization on the estrogen dependent behaviour of female canaries and budgerigars with discussion of data from other species. In: Advances in the study of behaviour, Eds. J.S. Rosenblatt, R.A. Hinde and M.C. Busnel. Academic Press, New York. 39-73. DOI: https://doi.org/10.1016/S0065-3454(08)60131-X
  23. Hirschenhauser, K., Winkler, H. and Oliveria, R.F., 2003. Comparative analysis of male androgen responsiveness to social environment in birds: the effects of mating system and paternal incubation. Horm. Behav., 43: 508-519. DOI: https://doi.org/10.1016/S0018-506X(03)00027-8
  24. Immelmann K., 1971. Ecological aspects of periodic reproduction. In: Avian biology. Vol. 1. Eds. D.S. Farner and J.R. King. Academic Press, New York, London. 341- 389.
  25. Kelley, D.B., Morrell, J.I. and Pfaff, D.W., 1975. Auto radiographic localization of hormone-Concentrating cells in the brain of an amphibian, Xenopus laevis, I. Testoserone. J.Comp. Neurol., 164: 47-62. DOI: https://doi.org/10.1002/cne.901640105
  26. Kelley, D.B., 1981. Locations of androgen concentrating cells in brain of Xenopus laevies: Autoradiography with 3H-dyhydrotestosterone. J. Comp. Neurol., 199: 221-231. DOI: https://doi.org/10.1002/cne.901990206
  27. Ketterson, E.D., and Jr. Nolan, V., 1994. Male parental behavior in birds. Annu. Rev. Ecol. Syst., 25: 601–628. DOI: https://doi.org/10.1146/annurev.es.25.110194.003125
  28. Khan, M.Z., McNabb, F.M.A., Walters, J.R. and Sharp, P.J., 2001. Patterns of testosterone and prolactin concentrations and reproductive behavior of helpers and breeders in the cooperatively breeding red-cockaded woodpecker, Picoides borealis. Horm. Behav., 40: 1–13. DOI: https://doi.org/10.1006/hbeh.2001.1658
  29. Kojima1, S. and Doupe, A.J., 2010. Social performance reveals unexpected vocal competency in young songbirds. Proc Natl Acad Sci., USA 10: 1073.
  30. Kumar, V. Singh, S. Misra, M. and Malik, S., 2001. Effects of duration and time of food availability on photoperiodic responses in the migratory male blackheaded bunting (Emberiza melanocephala). J. Exp. Biol., 204: 2843-2848. DOI: https://doi.org/10.1242/jeb.204.16.2843
  31. Mbller, A.P. and Birkhead, T.R., 1992. A pairwise comparative method as illustrated by copulation frequency in birds. Am. Nat., 139: 644–656. DOI: https://doi.org/10.1086/285348
  32. Mbller, A.P. and Birkhead, T.R., 1993. Certainty of paternity co-varies with paternal care in birds. Behav. Ecol. Sociobiol., 33: 261- 268. DOI: https://doi.org/10.1007/BF02027123
  33. Mc Comp, K., 1987. Roaring by red deer stags advances the date of oestrus in hinds. Nature, 330(6149): 648-649. DOI: https://doi.org/10.1038/330648a0
  34. Michalek, K.G., 1998. Sex roles in great spotted woodpeckers, Picoides major and middle spotted woodpeckers, Picoides medius. Ph.D. dissertation. University of Wien, Germany.
  35. Morrell, J.I., Kelley, D.B. and Pfaff, D.W., 1975. Auto radiographic localization of hormone-Concentrating cells in the brain of an amphivian, Xenopus laevis, II. estradial. J.Comp. Neurol., 164: 63-78. DOI: https://doi.org/10.1002/cne.901640106
  36. Mrosovsky, M., Salmon, P.A., and Ra lph, M.R., 1989. Non-photic phase shifting in hamster clock mutants. J. Biol. Rhythms, 7(1): 41-49. DOI: https://doi.org/10.1177/074873049200700104
  37. Naguib, M., 2005. Singing interactions in songbirds: implications for social relations and territorial settlement. In: McGregor PK, ed. Animal Communication Networks., Cambridge: Cambridge University Press. pp 300–319. DOI: https://doi.org/10.1017/CBO9780511610363.018
  38. Rissman, E.F., 1992. Mating induces Puberty in the musk Shrew. Biol. Reprod., 47: 473-477. DOI: https://doi.org/10.1095/biolreprod47.3.473
  39. Schwabl, H. and Sonnenschein, E., 1992. Antiphonal duetting and sex hormones in the tropical bush shrike Laniarius funebris. Horm. Behav., 26: 295-307. DOI: https://doi.org/10.1016/0018-506X(92)90001-C
  40. Schwagmeyer, P.L., St. Clair, R.C., Moodie, J.D., Lamey, T.C., Schnell, G.D. and Moodie, M.N., 1999. Species differences in male paternal care in birds: a reexamination of correlates with paternity. Auk., 116, 487-503. DOI: https://doi.org/10.2307/4089381
  41. Tramontin, A.D., Wingfield, J.C. and Brenowitz, E. A., 1999. Contributions of social cues and photoperiod to seasonal plasticity in the adult avian song control system. J. Neurosci., 19(1): 476-483. DOI: https://doi.org/10.1523/JNEUROSCI.19-01-00476.1999
  42. Turek, F.W., 1989. Effects of stimulated physical activity on the circadian pacemaker of vertebrates. J Biol Rhythm., 4:135-14. DOI: https://doi.org/10.1177/074873048900400204
  43. Wikelski, M., Hau, M. and Wingfield, J.C., 2000. Rainforest seasonality and reproduction in a neotropical rainforest bird. Ecology, 81: 2458-247. DOI: https://doi.org/10.1890/0012-9658(2000)081[2458:SORIAN]2.0.CO;2
  44. Wingfield, J.C., 1983. Environmental and endocrine control of avian reproduction: an ecological approach. In: Avian Endocrinology: Environmental and Ecological Perspectives. Pp. 265-288. Eds. S. Mikami and M. Wada, Japan Sci. Soc. Press, Tokyo/Springer-verlag, Berlin.
  45. Wingfield, J.C., 1994. Hormone-behavior interactions and mating systems in male and female birds. In: The differences between the sexes. Eds. R.V. Short and E. Balaban, Pp. 303–330. Cambridge Univ. Press, Cambridge.
  46. Wingfield, J.C., Hegner, R.E., Dufty, A.M., Jr., and Ball, G.F., 1990. The ‘‘challenge- hypothesis’’:Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am. Nat., 136: 829–846. DOI: https://doi.org/10.1086/285134
  47. Wingfield, J.C., Ronchi, E., Goldsmith, A.R. and Marler, C., 1989. Interactions of sex steroid hormones and prolactin in male and female song sparrows, Melospiza melodia. Physiol. Zool., 62: 11-24. DOI: https://doi.org/10.1086/physzool.62.1.30159995
  48. Wingfield, J.C., Smith, J.P. and Farner, D.S., 1982. Endocrine responses of white- crowned sparrows to environmental stress. Condor, 84: 399-409. DOI: https://doi.org/10.2307/1367443
  49. Winkler, H., Christie, D.A. and Nurney, D. 1995. Woodpeckers: A Guide toWoodpeckers of the World. Houghton Mifflin Co., New York.
  50. Wittingham, L.A. and Schwabl, H., 2002. Maternal testo sterone in tree swallow eggs varies with female aggression. Anim. Behav., 63: 63–67. DOI: https://doi.org/10.1006/anbe.2001.1889