Main Article Content

Abstract

In the present investigation xylanase producing bacteria was isolated from compost. A total of 95 xylanolytic bacteria were isolated on oat spelt xylan agar medium and screened by the xylanolysis method. Out of these 95 isolates, only one bacterial isolates, strain C1 was selected for further study on the basis of zone of hydrolysis on xylan-congo red agar plate. This strain was identified by 16S rDNA analysis. The phylogenetic analysis using 16S rDNA sequence data showed that isolate C1 showed highest nucleotide identity of 98% with Bacillus licheniformis strain CICC 10181 (GenBank accession no. GQ375235) and identified as Bacillus licheniformis strain C1. Bacillus licheniformis strain C1 was gram positive and rod shaped. Morphology of Bacillus licheniformis strain C1 showed- smooth texture, medium size, opaque transparency, creamish-white colour and serrated margin. Maximal xylanase production for Bacillus licheniformis strain C1 was achieved at the incubation period of 48 h. Xylanase and cellulase activities were determined as 20.0 U/ml and 1.3 U/ml, respectively.  The optimum pH and optimum temperature for xylanase activity was found to be 7.0 and 60°C, respectively. Xylanase was found to be thermostable at 60°C for 1h and retained 90% of its activity upto 6 h at this temperature. Approximately, 74% and 70% of its activity was retained at 70°C and 80°C respectively, after 6 h of incubation. All of these properties of the Bacillus licheniformis strain C1 xylanase make the suitability of this enzyme for its use in feed and baking industry.

Keywords

Feed and baking industry phylogenetic analysis 16S rDNA analysis xylanase

Article Details

How to Cite
Singh, V., Srivastava, K., Verma, A., & Agarwal, S. (2011). Identification of xylanase producing Bacillus licheniformis strain C1 and properties of crude xylanase. Environment Conservation Journal, 12(3), 113–120. https://doi.org/10.36953/ECJ.2011.120321

References

  1. Altschul, S. F., Madden, T.L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipmana, D.P. 1997. Gapped Blast and PSI-Blast: a new generation of protein database search programs. Nucleic acids program Research. 25: 3389-3402. DOI: https://doi.org/10.1093/nar/25.17.3389
  2. Baillet, E., Downey, G. and Tuohy, M. 2003. Improvement of texture and volume in white bread rolls by incorporation of microbial hemicellulase preparations, Recent Advances in Enzymes in Grain Processing, Proceedings of the 3rd European Symposium on Enzymes in Grain Processing (ESEGP-3). Courtin, C. M., Veraverbeke, W. S. and Delcour, J. A. (Eds.), Katholieke Universiteit Leuven, Leuven, Belgium. pp. 255–259.
  3. Chadha, B. S., Ajay, B. K., Mellon, F. and Bhat, M. K. 2004. Two endoxylanases active and stable at alkaline pH from the newly isolated thermophilic fungus, Myceliophthora sp. IMI 387099. Journal of Biotechnology. 109: 227–237. DOI: https://doi.org/10.1016/j.jbiotec.2003.12.010
  4. Choudhury, B., Chauhan, S., Singh, S. N. and Ghosh, P. 2006. Production of Xylanase of Bacillus coagulans and its bleaching potential. World Journal of Microbiology and Biotechnology. 22: 283–288. DOI: https://doi.org/10.1007/s11274-005-9033-0
  5. Cordeiro, C. A. M., Martins, M. L. L., Luciano, A. B., and da Silva, R. F. 2002. Production and properties of xylanase from thermophilic Bacillus sp. Brazilian Archives of Biology and Technology. 413- 418. DOI: https://doi.org/10.1590/S1516-89132002000600002
  6. Dervilly, G., Leclercq, C., Zimmermann, D., Roue, C., Thibault, J. F and Saulnier, L. 2002. Isolation and characterization of high molar mass water-soluble arabinoxylans from barley and barley malt. Carbohydrate Polymer. 47: 143–149. DOI: https://doi.org/10.1016/S0144-8617(01)00172-2
  7. Dhillon, A., Gupta, J. K. and Khanna, S. 2000. Enhanced production, purification and characterization of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB16. Process Biochemistry. 35: 849–856. DOI: https://doi.org/10.1016/S0032-9592(99)00152-1
  8. Duarte, M. C. T., Pellegrino, A. C. A., Portugal, E. P., Ponezi, A. N. and Franco, T. T. 2000. Characterization of alkaline xylanases from Bacillus pumilus. Brazilian Journal of Microbiology. 31: 90-94. DOI: https://doi.org/10.1590/S1517-83822000000200005
  9. Edwards, U., Rogall, T., Bloecker, H., Emde, M., and Boettger, E. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of gene coding for 16S rDNA ribosomal RNA. Nucleic Acid Research. 17: 7843-7853. DOI: https://doi.org/10.1093/nar/17.19.7843
  10. Fang, H. X., Shuang, Z. L. and Min, X. Y. 2004. Study on screening and cultivation condition of xylanase-producing aklalophilic bacterial. Wuhan University Journal of Natural Science. 9(1):125-128. DOI: https://doi.org/10.1007/BF02912733
  11. Gerhardt, P., Murray, R. E. G., Wood, W. A. and Krieg, N. R. 1994. Methods for general and molecular bacteriology. American society for Microbiology, Washington, D.C.
  12. Grabski, A. C. and Jeffries, T. W. 1991. Production, Purification, and Characterization of β–(1,4)-Endoxylanase from Streptomyces roseiscleroticus. Applied and Environmental Microbiology. 57(4): 987- 992. DOI: https://doi.org/10.1128/aem.57.4.987-992.1991
  13. Gray, J. A. and BeMiller, J. N. 2003. Bread staling: Molecular basis and control. Comprehensive Reviews in Food Science and Food Safety. 2: 1–21. DOI: https://doi.org/10.1111/j.1541-4337.2003.tb00011.x
  14. Guy, R. C. E. and Sarabjit, S. S. 2003. Comparison of effects of xylanases with fungal amylases in five flour types, Recent Advances in Enzymes in Grain Processing, Proceedings of the 3rd European Symposium on Enzymes in Grain Processing (ESEGP-3), Courtin, C. M., Veraverbeke, W. S. and Delcour, J. A. (Eds.), Katholieke Universiteit Leuven, Leuven, Belgium. pp. 235–239.
  15. Harbak, L. and Thygesen, H. V. 2002. Safety evaluation of a xylanase expressed in Bacillus subtilis, Food and Chemical Toxicology. 40: 1–8. DOI: https://doi.org/10.1016/S0278-6915(01)00092-8
  16. Haros, M., Rosell, C. M. and Benedito, C. 2002. Effect of different carbohydrases on fresh bread texture and bread staling. Europran Food Research and Technology. 215: 425–430. DOI: https://doi.org/10.1007/s00217-002-0580-4
  17. Hendricks, C.W., Doyel, J.D. and Hugely, B. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Applied and Environmental Microbiology. 61: 2016-2019. DOI: https://doi.org/10.1128/aem.61.5.2016-2019.1995
  18. Javier, P. F. I., Oscar, G., Sanz-Aparicio, J. and Diaz, P. 2007. Xylanases: Molecular Properties and Applications. In: Industrial Enzymes: Structure, Function and Applications. Polaina, J. and MacCabe, A.P. (Eds.), Springer, Dordrecht. The Netherlands. pp: 65–82. DOI: https://doi.org/10.1007/1-4020-5377-0_5
  19. Khanongnuch, C., Asada, K., Tsuruga, H., Toshihiko, Kinoshita, S. and Lumyong, S. 1998. β-mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. Journal of Fermentation and Bioengineering. 86(5): 461-466. DOI: https://doi.org/10.1016/S0922-338X(98)80152-9
  20. Kitamoto, N., Yoshino, S., Ohmiya, K. and Tsukagoshi, N. 1999. Purification and characterization of the overexpressed Aspergillus oryzae xylanase XynF1. Bioscience Biotechnology and Biochemistry. 6310: 1791-1794. DOI: https://doi.org/10.1271/bbb.63.1791
  21. Kuhad, R. C. and Singh, A. 1993. Lignocellulosic biotechnology: Current and future prospects. Critical Review of Biotechnology. 13: 151–172. DOI: https://doi.org/10.3109/07388559309040630
  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randal, R. J. 1951. Protein measurement with folin phenol reagent. Journal of Biological Chemistry. 193: 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
  23. Morales, P., Madarro, A., Perez-Gonzalez, J. A., Sendra, J. M., Pinaga, F. and Flors A. 1993. Purification and characterization of alkaline xylanases from Bacillus polymyxa. Applied and Enviornmental Microbiology. 1376-1382. DOI: https://doi.org/10.1128/aem.59.5.1376-1382.1993
  24. Muthezhilan, R., Ashok, R. and Jayalakshmi, S. 2007. Production and optimization of thermostable alkaline xylanase by Penicillium oxalicum in solid state fermentation. African Journal of Microbial Research. 20-28.
  25. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry. 153: 375-380. DOI: https://doi.org/10.1016/S0021-9258(18)71980-7
  26. Nuyens, F. H. Verachtert, H. and Michiels, C. 2001. Evaluation of a recombinant Saccharomyces cerevisiae strain secreting a Bacillus pumilus endo-beta-xylanase for use in bread-making, Meeting of the Benelux Yeast Research Groups, Leuven, Belgium. DOI: https://doi.org/10.1186/2048-4623-1-S1-P015
  27. Pereira, P. S., Ferreira, M. C. and Barros, M. R. A. 2002. Enzymatic properties of a neutral endo-1,3(4)-β-xylanase Xyl II from Bacillus subtilis. Journal of Biotechnology. 94: 265–275. DOI: https://doi.org/10.1016/S0168-1656(01)00436-9
  28. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., and Amorim, D. S. 2005. Xylanases from fungi: Properties and industrial applications. Applied Microbiology and Biotechnology. 67: 577–591. DOI: https://doi.org/10.1007/s00253-005-1904-7
  29. Rouau, X. 1993. Investigations into the effects of an enzyme preparation for baking on wheat flour dough pentosans. Journal of Cereal Science. 18: 145–157. DOI: https://doi.org/10.1006/jcrs.1993.1042
  30. Rouau, X. EI-Hayek, M. L. and Moreau, D. 1994. Effect of an enzyme preparation containing pentosanases on the bread-making quality of flours in relation to changes in pentosan properties. Journal of Cereal Science. 19: 259–272. DOI: https://doi.org/10.1006/jcrs.1994.1033
  31. Somogyi, M. 1952. Notes on sugars detremination. Journal of Biological Chemistry. 195: 19-23. DOI: https://doi.org/10.1016/S0021-9258(19)50870-5
  32. Ten, L. N., Im, W. T., Kim, M. K. and Lee, S. T. 2005. A plate assay for simultaneous screening of polysaccharide and protein-degrading micro-organisms. Letters in Applied Microbiology. 40: 92–98. DOI: https://doi.org/10.1111/j.1472-765X.2004.01637.x