Main Article Content

Abstract

There is an expanding request from customers for regular antimicrobial substances that can be utilised for food safeguarding and replace the synthetic food additive. The antimicrobial development of precisely critical lactic acid microorganisms as starter cultures and various probiotics microorganisms is the guideline subject of an audit. The probiotics produce metabolites, for example, natural acids (lactic and acetic acid), hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetone, carbon dioxide, reuterin, reutericyclin, and bacteriocins, etc. The capability of utilising metabolite bacteriocin obtained from lactic acid bacteria, fundamentally utilised as bio preservatives, serves as an antimicrobial methodology for persistently expanding issues with antimicrobial obstruction. The probiotic microorganism is a useful field for the development of recombinant probiotics with antimicrobial properties. These offer the most encouraging process against the pathogen.

Keywords

antimicrobial activity bacteriocins lactic acid bacteria probiotics starter cultures

Article Details

How to Cite
K., M., Malik, T., Gehlot, R. ., K, R., Kumari , A. ., Sindhu, R. . ., & Rohilla, P. . (2021). Antimicrobial Property of Probiotics. Environment Conservation Journal, 22(SE), 33–48. https://doi.org/10.36953/ECJ.2021.SE.2204

References

  1. Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A. and Martín-Belloso, O. 2015. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47: 168-177.
  2. Archibald, F. S. and. Fridovich. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. Journal of Bacterial Science, 145: 442-451.
  3. Baker, P., Hill, P.J., Snarr, B. D., Alnabelseya, N., Pestrak, M. J., Lee, M. J. V. 2016. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 20; 2(5):e1501632.
  4. Becker, Z. E. 1933. A comparison between the action of carbonic acid and other acids upon the living cell. Protoplasma, 25: 161-175.
  5. Bernela, M., Kaur, P., Chopra, M. and Thakur, R. 2014. Synthesis, characterization of nisin loaded alginate–chitosan–pluronic composite nanoparticles, and evaluation against microbes. LWT-Food Science and Technology, 59(2): 1093-1099.
  6. Buckow, R., Chandry, P. S., Ng, S. Y., McAuley, C. M. and Swanson, B. G. 2014. Opportunities and challenges in pulsed electric field processing of dairy products. International Dairy Journal, 34(2): 199-212.
  7. Chung, T. C., Axelsson, L., Lindgren, S. E. and Dobrogosz, W. J. 1989. In vitro studies on reuterin synthesis by Lactobacillus reuteri. Microbial Ecology Health Disease, 2: 137-144.
  8. Collins, L. J., Kurland, C. G., Biggs, P. and Penny, D. 2009. The modern RNP world of eukaryotes. Journal of heredity, 100(5): 597-604.
  9. Condon, S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiology Reviews, 3(3): 269-280.
  10. Cotter, P. D., Hill, C. and Ross, R. P. 2005. Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10): 777-788.
  11. Coyne, F. P. 1933. The effect of carbon dioxide on bacteria growth. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Characte, 113(782): 196-217.
  12. Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology (Chicago), 43(1): 164-167.
  13. de Kairuz, M. S. N., Diazabal, M. E., Oliver, G., de Ruiz Holgado, A. A. P., Massa, E. and Farias, R. N. 1988. Fatty acid-dependent hydrogen peroxide production in Lactobacillus. Biochemical and biophysical research communications, 152(1): 113-121.
  14. De Vuyst, L. and Degeest, B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS microbiology reviews, 23(2): 153-177.
  15. De Vuyst, L. and Leroy, F. 2007. Bacteriocins from lactic acid bacteria: production, purification, and food applications. Journal of molecular microbiology and biotechnology, 13(4): 194-199.
  16. Deegan, L. H., Cotter, P. D., Hill, C. and Ross, P. 2006. Bacteriocins: biological tools for bio-preservation and shelf-life extension. International dairy journal, 16(9): 1058-1071.
  17. Fang, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H. and Yang, C. S. 2003. Tea polyphenol (?)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Research, 63(22): 7563-7570.
  18. Fijan, S. 2016. Antimicrobial effect of probiotics against common pathogens. In Tech, Venkateswara.
  19. Frankel, M. and Olitzki, L. 1930. Separation of Antibodies from the Serum Proteins. Nature, 126 (3184): 723-724.
  20. Gálvez, A., Abriouel, H., López, R. L. and Omar, N. B. 2007. Bacteriocin-based strategies for food biopreservation. International journal of food microbiology, 120(1-2): 51-70.
  21. Georgieva, M., Georgiev, K. and Dobromirov, P. 2015. Probiotics and Immunity. In Immunopathology and Immunomodulation, Intech Open.
  22. Ghildyal, N., McNeil, H. P., Gurish, M. F., Austen, K. F. and Stevens, R. L. 1992. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. Journal of Biological Chemistry, 267(12): 8473-8477.
  23. Chen, H. 2003. D.G. Hoover, Bacteriocins and their food applications, Comprehensive Reviews in Food Science and Food Safety, 2: 82-100.
  24. Hassan, M. M., Amin, K. B., Ahaduzzaman, M., Alam, M., Faruk, M. S. and Uddin, I. 2014. Antimicrobial resistance pattern against E. coli and Salmonella in layer poultry. Research Journal for Veterinary Practitioners, 2(2): 30-35.
  25. Havelaar, A. H., Bräunig, J., Christiansen, K., Cornu, M., Hald, T., Mangen, M. J. and Velthuis, A. 2007. Towards an integrated approach in supporting microbiological food safety decisions. Zoonoses and public health, 54(3-4): 103-117.
  26. Holtzel, A., Ganzle, M. G., Nicholson, G. J., Hammes, W. P. and Jung, G. 2000. The first low molecular weight antibiotic from lactic acid bacteria: reutericyclin, a new tetramic acid. Angewandte Chemie International Edition, 39: 2766-2768.
  27. Hurdle, J. G., Heathcott, A., Yang, L., Yan, B. and Lee, R. E. 2011. Reutericyclin and related analogues kill stationary phase Clostridiumdifficile at achievable colonic concentrations. Journal of Antimicrobial Chemotherapy, 66: 1773-1776.
  28. Imran, M., Revol-Junelles, A. M., Paris, C., Guedon, E., Linder, M. and Desobry, S. 2015. Liposomal nano delivery systems using soy and marine lecithin to encapsulate food bio preservative nisin. LWT-Food Science and Technology, 62(1): 341-349.
  29. Jaiswal, M., Dudhe, R. and Sharma, P. K. 2015. Nanoemulsion: an advanced mode of drug delivery system. Biotech, 5(2): 123-127.
  30. Jaleel, S. and Kiliç, A. O. 2020. Antimicrobial Action of isolated Probiotic Lactobacillus plantarum from Different Fermented Dairy Products from Trabzon City. Research Journal of Pharmacy and Technology, 13(5): 2445-2451.
  31. Jung, D. S., Bodyfelt, F. W. and Daeschel, M. A. 1992. Influence of fat and emulsifiers on the efficacy of nisin in inhibitingListeria monocytogenes in fluid milk. Journal of Dairy Science, 75(2): 387-393.
  32. Kandler, O. 1993. Cell wall biochemistry and three-domain concept of life. Systematic and applied microbiology, 16(4): 501-509.
  33. Kasimin, M. E., Faik, A. A. M., Jani, J., Abbasiliasi, S., Ariff, A. B. and Jawan, R. 2020. Probiotic Properties of Antimicrobial-Producing Lactic Acid Bacteria Isolated from Dairy Products and Raw Milk Of Sabah (Northern Borneo), Malaysia.
  34. Law, J., Buist, G., Haandrikman, A., Kok, J., Venema, G. and Leenhouts, K. 1995. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. Journal of bacteriology, 177(24): 7011-7018.
  35. Leroy, F., Verluyten, J. and De Vuyst, L. 2006. Functional meat starter cultures for improved sausage fermentation. International journal of food microbiology, 106(3): 270-285.
  36. Lindgren, S. E. and Dobrogosz, W. J. 1990. Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS microbiology reviews, 7(1-2): 149-163.
  37. Linley, E., Denyer, S. P., McDonnell, G., Simons, C. and Maillard, J. Y. 2012. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7): 1589-1596.
  38. López, M., Lage, R., Saha, A. K., Pérez-Tilve, D., Vázquez, M. J., Varela, L. and Deoliveira, R. M. 2008. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell metabolism, 7(5): 389-399.
  39. Lüthi-Peng, Q., Dileme, F. and Puhan, Z. 2002. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Applied Microbiology and Biotechnology, 59(2-3): 289-296.
  40. Marco, M. L., Pavan, S. and Kleerebezem, M. 2006. Towards understanding molecular modes of probiotic action. Current opinion in biotechnology, 17(2): 204-210.
  41. McDonnell, G. 2007. Peroxygens and other forms of oxygen: their use for effective cleaning, disinfection, and sterilization.
  42. Minj, J., Chandra, P., Paul, C. and Sharma, R. K. 2020. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Critical Reviews in Food Science and Nutrition, 1-18.
  43. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. and O'Garra, A. 2001. Interleukin-10 and the interleukin-10 receptor. Annual review of immunology, 19(1): 683-765.
  44. Murry Jr, A. C., Hinton Jr, A. and Morrison, H. 2004. Inhibition of growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on chicken feed media by Lactobacillus salivarius and Lactobacillus plantarum. International Journal Poulton Science, 3(9): 603-607.
  45. Ostapska, H., Howell, P. L., Sheppard, D. C. 2018. Deacetylated microbial biofilm exopolysaccharides: It pays to be positive. PLoS Pathog 14(12): e1007411. https://doi.org/10.1371/journal.ppat.1007411
  46. Ouwehand, A. C. and Vesterlund, S. 2004. Antimicrobial components from lactic acid bacteria. Food Science and Technology-New York-Marcel Dekker, 139: 375-396.
  47. Quintavalla, S. and Vicini, L. 2002. Antimicrobial food packaging in meat industry. Meat Science, 62(3): 373-380.
  48. Reid, G., Dols, J. and Miller, W. 2009. Targeting the vaginal microbiota with probiotics as a means to counteract infections. Current Opinion in Clinical Nutrition & Metabolic Care, 12(6): 583-587.
  49. Rogelj, I. 1994. Lactic acid bacteria as probiotics. Mljekarstvo: ?asopis za unaprje?enje proizvodnje i prerade mlijeka, 44(4): 277-284.
  50. Rousset, F., Garcia, E., Defrance, T., Peronne, C., Vezzio, N., Hsu, D. H. and Banchereau, J. 1992. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proceedings of the National Academy of Sciences, 89(5): 1890-1893.
  51. Savino, F., Pelle, E., Palumeri, E., Oggero, R. and Miniero, R. 2007. Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. Pediatrics, 119: e124–e130.
  52. Snarr, B. D., Baker, P., Bamford, N. C., Sato, Y., Liu, H., Lehoux, M. and Filler, E. E. 2017. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proceedings of the National Academy of Sciences, 114(27): 7124-7129.
  53. Sriramulu, D. D., Liang, M., Hernandez-Romero, D., Raux-Deery, E., Lünsdorf, H., Parsons, J. B. and Prentice, M. B. 2008. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1, 2-propanediol by disproportionation. Journal of bacteriology, 190(13): 4559-4567.
  54. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W. and Remaut, E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science, 289(5483): 1352-1355.
  55. Talarico, T. L., Casas, I. A., Chung, T. C. and Dobrogosz, W. J. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial agents and chemotherapy, 32(12): 1854-1858.
  56. Taylor, T. M., Gaysinsky, S., Davidson, P. M., Bruce, B. D. and Weiss, J. 2007. Characterization of antimicrobial-bearing liposomes by-potential, vesicle size, and encapsulation efficiency. Food Biophysics, 2(1): 1-9.
  57. Vandenbergh, P. A. 1993. Lactic acid bacteria, their metabolic products, and interference with microbial growth. FEMS Microbiology Reviews, 12(1-3): 221-237.
  58. Vollenweider, S. and Lacroix, C. 2004. 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol, 64: 16-27.
  59. Williams, Anisha M., "Studies on the mode of action of diacetyl and carbon dioxide as inhibitors of meat spoilage bacteria" (1998). Wayne State University Dissertations. 1242. https://digitalcommons.wayne.edu/oa_dissertations/1242
  60. Zhang, J., Peppard, T. L. and Reineccius, G. A. 2015. Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour and Fragrance Journal, 30(4): 288-294.