Main Article Content

Abstract

The Himalayan State of Uttarakhand has abundant natural water resources and 98 Hydro Electric Power Project (HEP’s) have been constructed, 25 are under construction and, 336 are planned for the future.  The water bodies of these HEP’s can also be utilized for other purposes besides electric power generation. To conserve the endemic aquatic biodiversity, it is necessary to understand the phosphate and nitrate dynamics of these water bodies. As there are several HEP’s on a single river and the human population around them, water bodies have changed drastically during the last decade. In this study, we have calculated the phosphate and nitrate load-carrying capacity of six dams in the Uttarakhand state of India using the Vollen-Weider mathematical model modified by Dillon, Rigler and Beveridge.  We have also measured the phosphate & nitrate content of these water bodies to confirm if our modelling methods confirmed with actual finding of sampling sites. The phosphate and nitrate carrying capacity of these six dams were found to be in the range of 0.155 mg/l to 0.557 mg/l and 0.6 mg/l to 1.3 mg/l. To the best of our knowledge, this is the first study in Uttarakhand that addresses the phosphate and nitrate carrying capacity using a mathematical model.

Keywords

Carrying capacity Himalaya Modeling Phosphate Vollen-Weider mathematical model

Article Details

How to Cite
Panwar, S., K, S., Goyal, N., Ram, M., Thapliyal , M., Semwal , P., & Thapliyal , A. (2022). Mathematical modelling for the phosphate and nitrate carrying capacity of dams in Uttarakhand. Environment Conservation Journal, 23(3), 343–352. https://doi.org/10.36953/ECJ.15512475

References

  1. Aileen Tan SH, Sim YK, Norlaila MZ, Nooraini I, Masthurah Aileen Tan, S. H., Sim, Y. K., Norlaila, M. Z., Nooraini, I., Masthurah, A., Aqilah, N., & Noraisyah, A. B. (2021). Causes of fish kills in Penang, Malaysia in year 2019, in conjunction to Typhoon Lekima. Survey in Fisheries Sciences, 7(2), 231-247. https://doi.org/10.18331/SFS2021.7.2.20 DOI: https://doi.org/10.18331/SFS2021.7.2.20
  2. Almasri, M. N., & Kaluarachchi, J. J. (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology, 295(1-4), 225-245. https://doi.org/10.1016/j.jhydrol.2004.03.013 DOI: https://doi.org/10.1016/j.jhydrol.2004.03.013
  3. Baldwin, D. S. (2013). Organic phosphorus in the aquatic environment. Environmental Chemistry, 10(6), 439-454. https://doi.org/10.1071/EN13151 DOI: https://doi.org/10.1071/EN13151
  4. Bartoszek, L., & Koszelnik, P. (2016). The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. SpringerPlus, 5(1), 1-15. https://doi.org/10.1186/s40064-016-2836-7 DOI: https://doi.org/10.1186/s40064-016-2836-7
  5. Boström, B., & Pettersson, K. (1982). Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia, 91, 415-429. https://doi.org/10.1007/BF02391957 DOI: https://doi.org/10.1007/978-94-009-8009-9_41
  6. Bueno, G. W., Bureau, D., Skipper-Horton, J. O., Roubach, R., Mattos, F. T. D., & Bernal, F. E. M. (2017). Mathematical modeling for the management of the carrying capacity of aquaculture enterprises in lakes and reservoirs. Pesquisa agropecuaria brasileira, 52, 695-706. https://doi.org/10.1590/s0100-204x2017000900001 DOI: https://doi.org/10.1590/s0100-204x2017000900001
  7. Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58(9), 1255-1267. https://doi.org/10.1016/j.chemosphere.2004.10.044 DOI: https://doi.org/10.1016/j.chemosphere.2004.10.044
  8. Canfield Jr, D. E., & Bachmann, R. W. (1981). Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Canadian journal of fisheries and aquatic sciences, 38(4), 414-423. https://doi.org/10.1139/f81-058 DOI: https://doi.org/10.1139/f81-058
  9. Central Water Commission. (1994). National register of large dams. Central Water Commission, Government of India.
  10. Dillon, P. J., & Rigler, F. H. (1974). A test of a simple nutrient budget model predicting the phosphorus concentration in lake water. Journal of the Fisheries Board of Canada, 31(11), 1771-1778. https://doi.org/10.1139/f74-225 DOI: https://doi.org/10.1139/f74-225
  11. Fadiran, A. O., Dlamini, S. C., & Mavuso, A. (2008). A comparative study of the phosphate levels in some surface and ground water bodiesof Swaziland. Bulletin of the Chemical Society of Ethiopia, 22(2). https://doi.org/10.4314/bcse.v22i2.61286 DOI: https://doi.org/10.4314/bcse.v22i2.61286
  12. Federation, W. E., & Aph Association. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA, 21.
  13. Fones, G. R., Bakir, A., Gray, J., Mattingley, L., Measham, N., Knight, P., & Mills, G. A. (2020). Using high-frequency phosphorus monitoring for water quality management: a case study of the upper River Itchen, UK. Environmental monitoring and assessment, 192(3), 1-15. https://doi.org/10.1007/s10661-020-8138-0 DOI: https://doi.org/10.1007/s10661-020-8138-0
  14. Hampel, J. J., McCarthy, M. J., Gardner, W. S., Zhang, L., Xu, H., Zhu, G., & Newell, S. E. (2018). Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences, 15(3), 733-748. https://doi.org/10.5194/bg-15-733-2018 DOI: https://doi.org/10.5194/bg-15-733-2018
  15. Harpal, S., & Gurnam, S. (2020). Impact of Tehri Dam Construction on Biotic and Abiotic Components of River Bhilangana, Central Himalaya, India. Journal of Aquatic Biology & Fisheries, 8, 52-57.
  16. Holtan, H., Kamp-Nielsen, L., & Stuanes, A. O. (1988). Phosphorus in soil, water and sediment: an overview. Phosphorus in freshwater ecosystems, 19-34. https://doi.org/10.1007/978-94-009-3109-1_3 DOI: https://doi.org/10.1007/978-94-009-3109-1_3
  17. ISFR. (2019). India state of forest report. Forest Survey of India.
  18. Junaidi, J. (2021). Levels of available nitrogen-phosphorus before and after fish mass mortality in Maninjau Lake of Indonesia. Levels of Available Nitrogen-Phosphorus Before and After Fish Mass Mortality in Maninjau Lake of Indonesia.
  19. Khan, M. Y. A., Gani, K. M., & Chakrapani, G. J. (2016). Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arabian Journal of Geosciences, 9(1), 1-9. https://doi.org/10.1007/s12517-015-2134-7 DOI: https://doi.org/10.1007/s12517-015-2134-7
  20. Kotnala, G., Dobhal, S., & Chauhan, J. S. (2016). Monitoring the self-purification capacity of the River Alaknanda stretch at Srinagar, Uttarakhand, India. International Journal of River Basin Management, 14(4), 491-498. https://doi.org/10.1080/15715124.2016.1193506 DOI: https://doi.org/10.1080/15715124.2016.1193506
  21. Larsen, D. P., & Mercier, H. T. (1976). Phosphorus retention capacity of lakes. Journal of the Fisheries Board of Canada, 33(8), 1742-1750. https://doi.org/10.1139/f76-221 DOI: https://doi.org/10.1139/f76-221
  22. Le Faucheur, S., Vasiliu, D., Catianis, I., Zazu, M., Dranguet, P., Beauvais-Flück, R., & Slaveykova, V. I. (2016). Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery. Environmental Science and Pollution Research, 23(22), 22542-22553. https://doi.org/10.1007/s11356-016-7405-7 DOI: https://doi.org/10.1007/s11356-016-7405-7
  23. Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., & Pinay, G. (2019). Eutrophication: a new wine in an old bottle? Science of the Total Environment, 651, 1-11. https://doi.org/10.1016/j.scitotenv.2018.09.139 DOI: https://doi.org/10.1016/j.scitotenv.2018.09.139
  24. López, P., López-Tarazón, J. A., Casas-Ruiz, J. P., Pompeo, M., Ordoñez, J., & Muñoz, I. (2016). Sediment size distribution and composition in a reservoir affected by severe water level fluctuations. Science of the Total Environment, 540, 158-167. https://doi.org/10.1016/j.scitotenv.2015.06.033 DOI: https://doi.org/10.1016/j.scitotenv.2015.06.033
  25. Maavara, T., Parsons, C. T., Ridenour, C., Stojanovic, S., Dürr, H. H., Powley, H. R., & Van Cappellen, P. (2015). Global phosphorus retention by river damming. Proceedings of the National Academy of Sciences, 112(51), 15603-15608. https://doi.org/10.1073/pnas.1511797112 DOI: https://doi.org/10.1073/pnas.1511797112
  26. Maberly, S. C., & Elliott, J. A. (2012). Insights from long?term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshwater Biology, 57(2), 233-243. https://doi.org/10.1111/j.1365-2427.2011.02718.x DOI: https://doi.org/10.1111/j.1365-2427.2011.02718.x
  27. Maberly, S. C., Pitt, J. A., Davies, P. S., & Carvalho, L. (2020). Nitrogen and phosphorus limitation and the management of small productive lakes. Inland Waters, 10(2), 159-172. https://doi.org/10.1080/20442041.2020.1714384 DOI: https://doi.org/10.1080/20442041.2020.1714384
  28. Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., ... & Scheffer, M. (2011). Allied attack: climate change and eutrophication. Inland waters, 1(2), 101-105. https://doi.org/10.5268/IW-1.2.359 DOI: https://doi.org/10.5268/IW-1.2.359
  29. Nordin, R. N., Pommen, L. W., & Meays, C. L. (2009). Water quality guidelines for nitrogen (nitrate, nitrite, and ammonia). Water Stewardship Division, Ministry of Environment, Province of British Columbia, Canada, 1-29.
  30. Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C., & Venkiteswaran, J. J. (2017). Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Canadian journal of fisheries and aquatic sciences, 74(12), 2005-2029. https://doi.org/10.1139/cjfas-2016-0500 DOI: https://doi.org/10.1139/cjfas-2016-0500
  31. Randall, M. C., Carling, G. T., Dastrup, D. B., Miller, T., Nelson, S. T., Rey, K. A., ... & Aanderud, Z. T. (2019). Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS One, 14(2), e0212238. https://doi.org/10.1371/journal.pone.0212238 DOI: https://doi.org/10.1371/journal.pone.0212238
  32. Raveendar, B., Gurjar, U. R., Takar, S., Gugulothu, R., Mamidala, S., & Guguloth, B. (2021). Soil and water characteristics of Nanak Sagar reservoir, Tarai region of Uttarakhand, India. IJCS, 9(1), 942-948. https://doi.org/10.22271/chemi.2021.v9.i1m.11349 DOI: https://doi.org/10.22271/chemi.2021.v9.i1m.11349
  33. Reckhow, K. H., & Simpson, J. T. (1980). A procedure using modeling and error analysis for the prediction of lake phosphorus concentration from land use information. Canadian Journal of Fisheries and Aquatic Sciences, 37(9), 1439-1448. https://doi.org/10.1139/f80-184 DOI: https://doi.org/10.1139/f80-184
  34. Richardson, J., Miller, C., Maberly, S. C., Taylor, P., Globevnik, L., Hunter, P., & Carvalho, L. (2018). Effects of multiple stressors on cyanobacteria abundance vary with lake type. Global change biology, 24(11), 5044-5055. https://doi.org/10.1111/gcb.14396 DOI: https://doi.org/10.1111/gcb.14396
  35. Rickson, R. J. (2014). Can control of soil erosion mitigate water pollution by sediments? Science of the Total Environment, 468, 1187-1197. https://doi.org/10.1016/j.scitotenv.2013.05.057 DOI: https://doi.org/10.1016/j.scitotenv.2013.05.057
  36. Ruttenberg, K. C. (1992). Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and oceanography, 37(7), 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460 DOI: https://doi.org/10.4319/lo.1992.37.7.1460
  37. Saraswathy, R., Muralidhar, M., Sanjoy, D., Kumararaja, P., Suvana, S., Lalitha, N., & Vijayan, K. K. (2019). Changes in soil and water quality at sediment-water interface of Penaeus vannamei culture pond at varying salinities. Aquaculture Research, 50(4), 1096-1106. https://doi.org/10.1111/are.13984 DOI: https://doi.org/10.1111/are.13984
  38. Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J. & Kasian, S. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105(32), 11254-11258. https://doi.org/10.1073/pnas.0805108105 DOI: https://doi.org/10.1073/pnas.0805108105
  39. Sharma, R. C., Bahuguna, M., & Chauhan, P. (2008). Periphytonic diversity in Bhagirathi: preimpoundment study of Tehri dam reservoir. Journal of Environmental Science and Engineering, 50(4), 255-262.
  40. Sharma, P. N. S. K. N., & Kala, K. C. K. (2019). Coldwater capture fishery in the Ganga headwaters having operational hydropower projects: A failing co-existence. Journal of the Inland Fisheries Society of India, 6.
  41. Smolders, A. J. P., Lamers, L. P. M., Lucassen, E. C. H. E. T., Van der Velde, G. J. G. M., & Roelofs, J. G. M. (2006). Internal eutrophication: how it works and what to do about it-a review. Chemistry and ecology, 22(2), 93-111. https://doi.org/10.1080/02757540600579730 DOI: https://doi.org/10.1080/02757540600579730
  42. Søndergaard, M., Jensen, J. P., & Jeppesen, E. (2003). Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia, 506(1), 135-145. https://doi.org/10.1023/B:HYDR.0000008611.12704.dd DOI: https://doi.org/10.1023/B:HYDR.0000008611.12704.dd
  43. Thin, M. M., Sacchi, E., Setti, M., & Re, V. (2020). A dual source of phosphorus to lake sediments indicated by distribution, content, and speciation: Inle Lake (Southern Shan State, Myanmar). Water, 12(7), 1993. https://doi.org/10.3390/w12071993 DOI: https://doi.org/10.3390/w12071993
  44. Uttarakhand Jal Vidyut Nigam Limited (UJVN Limited). Hydro Power Projects in Uttarakhand (cited August 24 2021). Available from Welcome to Uttarakhand Jal Vidyut Nigam Ltd. Dehradun (ujvnl.com)
  45. Wanja, D. W., Mbuthia, P. G., Waruiru, R. M., Mwadime, J. M., Bebora, L. C., Nyaga, P. N., & Ngowi, H. A. (2020). Fish husbandry practices and water quality in central Kenya:potential risk factors for fish mortality and infectious diseases. Veterinary medicine international, 2020. https://doi.org/10.1155/2020/6839354 DOI: https://doi.org/10.1155/2020/6839354
  46. Warningsih, T., Setiyanto, D. D., Fahrudin, A., Adrianto, L. (2016). Carrying capacity of Koto Panjang reservoir's ecosystem provisioning services for floating net cage culture (FNC). International Journal of Research in Earth and Environmental Sciences 4(1): 30-35.
  47. Zhang, Y., Cheng, L., Li, K., Zhang, L., Cai, Y., Wang, X., & Heino, J. (2019). Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes. Limnology and Oceanography, 64(3), 1047-1058. https://doi.org/10.1002/lno.11096 DOI: https://doi.org/10.1002/lno.11096