Main Article Content

Abstract

The present study on pathogenicity of entomopathogenic nematodes against Spodoptera litura in laboratory conditions was undertaken during 2020-21, with the aim to ascertain the effectiveness of entomopathogenic nematodes, against an obnoxious cosmopolitan pest S. litura. Experiments were conducted by using entomopathogenic nematode (EPN) isolate Heterorhabditis indica (CICR-Guava), on filter paper, against Galleria mellonella and S. litura at the treatment dose of 10, 20, 30, 40, 60, 80 and 100 IJs/100µl along with control (Sterile distilled water). The results of our study revealed that, EPN isolate H. indica (CICR-Guava) caused 100% mortality at the treatment dose of 40 IJs/100µl within 72 h of infection in 5th instar larvae of G. mellonella and in case of S. litura, 100% mortality was recorded within 72 h of infection at the treatment dose of 100 IJs/100µl in 3rd instar larvae, which was found more susceptible. The median lethal concentration of H. indica (CICR-Guava) for 5th instar larvae was 2.29 IJs/100µl. The result of reproductive potential of isolates of entomopathogenic nematodes revealed that the highest yield was obtained from 5th instar larvae of G. mellonella at treatment dose of 100 IJs/100µl 278667 IJs per larva. In case of S. litura, the highest yield obtained was 152533 IJs. It could be concluded that, there was a positive correlation between nematode treatment concentration, time of exposure and the insect mortality of the tobacco cut worm and multiplication rate of IJs increased with increase of exposure time and size of larvae. This EPN isolate, H. indica (CICR-Guava) can be suggested as biocontrol agents for the control of S. litura in the Vidarbha region.

Keywords

Biocontrol Agents Entomopathogenic Nematodes Heterorhabditis indica Pathogenicity Reproductive Potential Spodoptera litura

Article Details

How to Cite
Supriya, K., Dash, S. S., Ingole, D. B., Kashyap, D. P., Lavhe, N. V., & Tambe, V. J. (2022). Evaluation of entomopathogenic nematode (EPN) isolate, Heterorhabditis indica of Vidarbha region, against the tobacco cutworm, Spodoptera litura. Environment Conservation Journal, 23(3), 35–41. https://doi.org/10.36953/ECJ.11372293

References

  1. Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a
  2. Acharya, R., Hwang, H., Mostafiz, M. M., Yu, Y. S. & Lee, K. Y. (2020b). Susceptibility of various developmental stages of the fall armyworm, Spodoptera frugiperda, to entomopathogenic nematodes. Insects, 11(868), 1-13. DOI: https://doi.org/10.3390/insects11120868
  3. Acharya, R., Yu Y. S., Shim J. K. & Lee. K. Y. (2020a). Virulence of four entomopathogenic nematodes against the tobacco cutworm Spodoptera litura Fabricius. Biological Control, 50, 1-24. DOI: https://doi.org/10.1016/j.biocontrol.2020.104348
  4. Atwa, A. & Hassan, S. H. (2014). Bioefficacy of two entomopathogenic nematodes against Spodoptera littoralis Boisduval (Lepidoptera) and Temnorhynchus baal Reiche (Coleoptera) larvae. Journal of Biopesticides, 7(2), 104-109.
  5. Caccia, M. G., Valle, E. D., Doucet, M. E. & Lax, P. (2014). Susceptibility of Spodoptera frugiperda and Helicoverpa gelotopoeon (Lepidoptera: Noctuidae) to the entomopathogenic nematode Steinernema diaprepesi (Rhabditida: Steinernematidae) under laboratory conditions. Chilean journal of agricultural research, 74(1), 123-126. DOI: https://doi.org/10.4067/S0718-58392014000100019
  6. Dhirta, B. & Khanna, A. S. (2019). Mass production of Heterorhabditis bacteriophora on lepidopteran insect pests. Journal of Pharmacognosy and Phytochemistry, 8(5), 1550-1553.
  7. Ganguly, S. & Somvanshi, V. S. (2007). Efficacy of foliar application of entomopathogenic nematodes against the cruicifer diamond back moth Plutella xyllostella. Nematologia Mediterranea, 35, 5-14.
  8. Holajjer, P., Patil, J. B., Harish, G, Nataraja, M, V., Poonam, J. & Savaliya, S. D. (2014). Evaluation of entomopathogenic nematodes, Steinernema carpocapsae and Heterorhabditis indica for their virulence against Spodoptera litura. Annals of Plant Protection Sciences, 22(1), 163-165.
  9. Kamaliya, R. P., Jethva, D. M., Kachhadiya, N. M., Bhut, J. B. & Ahir, V. R. (2019). Bio-efficacy of entomopathogenic nematode Heterorhabditis indica against Spodoptera litura (Fabricius). Journal of Pharmacognosy and Phytochemistry, 8(2), 1563-1567. DOI: https://doi.org/10.20546/ijcmas.2019.804.093
  10. Kim, H. H., Cho, S. R., Choo, H. Y., Lee, S. M., Jeon, H. Y. & Lee, D.W. (2008). Biological control of tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae) by Steinernematid and Heterorhabditid entomopathogenic nematodes. Korean Journal of Applied Entomology, 47(4), 447-456. DOI: https://doi.org/10.5656/KSAE.2008.47.4.447
  11. Lalramliana, & Yadav, A. K. (2010). Occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Meghalaya, NE India. Science Vision, 10(3), 89-100.
  12. Pal, R., Tiwari, G. N. & Prasad, C. S. (2012). Pathogenicity and mass production of entomopathogenic nematode, Heterohabditis indica on major insects of agricultural importance. Trends in Biosciences, 5(1), 38-40.
  13. Park, S. H., Yu, Y.S., Park, J. S., Choo, H. Y., Bae, S. D. & Nam, M. H. (2001). Biological control of tobacco cutworm, Spodoptera litura Fabricius with entomopathogenic nematodes. Biotechnology Bioprocess Engineering, 6, 139-143. DOI: https://doi.org/10.1007/BF02931960
  14. Poinar, G. O. Jr. (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: R. Gaugler and H. K. Kaya, (Eds.). Entomopathogenic Nematodes in Biological Control. Boca Raton: CRC Press, pp. 23-61.
  15. Poinar, G. O. (1979). Nematodes for biological control of insects. Boca Raton, CRC Press, FL.
  16. Radhakrishnan, S. & Shanmugam, S. (2017). Bioefficacy of entomopathogenic nematodes against Spodoptera litura (Lepidoptera: Noctuidae) in bhendi. International Journal of Current Microbiology and Applied Sciences, 6(7), 2314-2319. DOI: https://doi.org/10.20546/ijcmas.2017.607.273
  17. White, G. F. (1927). A method for obtaining infective nematode larvae from cultures. Science, 66(1709), 302-303. DOI: https://doi.org/10.1126/science.66.1709.302.b
  18. Wiesner, A. (1993). Die Induktion der Immunabwehr eines Insekts (Galleria mellonella, Lepidoptera) durch synthetische Materialien und arteigene Haemolymphfaktoren. Berlin.
  19. Woodring, J. L. & Kaya, H. K. (1988). Steinernematid and Heterorhabditid Nematodes: A Handbook of biology and techniques. Southern Cooperative Series Bulletin 331. Arkansas Agri. Exp. Stat., Fayetteville, Arkansas, USA.
  20. Yadav, A. K. & Lalramilana. (2012). Efficacy of indigenous entomopathogenic nematodes from Meghalaya, India against the larvae of taro leaf beetle, Aplosonyxchalybaeus. Journal of Parasitic Diseases, 36(2), 149-154. DOI: https://doi.org/10.1007/s12639-012-0139-7
  21. Yan, X., Arain, M. S., Lin, Y., Gu, X., Zhang, L., Li, J., & Han, R. (2019). Efficacy of entomopathogenic nematodes against the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 113(1), 1-9. DOI: https://doi.org/10.1093/jee/toz262
  22. Yuksel, E. & Canhilal, R. (2018). Evaluation of local isolates of entomopathogenic nematodes for the management of black cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 28(82), 1-7. DOI: https://doi.org/10.1186/s41938-018-0087-3