Main Article Content

Abstract

The high temperature and heat stress are the main factors that limit the optimum yield of maize in tropical countries. Improvement in the agronomic practices is need of the hour to overcome heat stress in maize hence the experiment was conducted to study the response of heat resilient maize hybrids to different fertilizer levels on nutrient uptake, dry matter production and yield. It was laid out in split plot design and replicated thrice. Main plot includes genotypes (viz., RCRMH-2, RCRMH-3, RCRMH-11 and Cargill 900M Gold) and sub plots with three fertilizer levels (viz., 75 % Recommended Dose of Fertilizer (RDF), 100 % RDF and 125 % RDF. The 100 % RDF was 187.5:75:37.5 kg NPK ha-1). Results revealed that significantly higher grain yield was recorded by genotype, RCRMH-3 (5841 kg / ha) and RCRMH-2 (5627 kg / ha) and suitable for summer seasons as compared to RCRMH-11 (5139 kg / ha) and Cargill 900M Gold (4695 kg / ha). Among the fertilizer levels, increase in fertilizer levels from 75 (4922 kg / ha) to 100 % (5365 kg / ha) increased the grain yield significantly and further increase to 125 % RDF (5689 kg / ha), there is no significant differences among the treatments. These treatments also showed similar effects with respect to growth and yield parameters contributing for the higher yield and monetary benefits.

Keywords

Fertilizer levels Grain yield Heat resilient maize Nutrient uptake RDF

Article Details

How to Cite
U, P., Channabasavanna, A. S., & Raddy, G. (2023). Performance of heat resilient maize hybrids to different levels of fertilizers in Tungabhadra Project command area. Environment Conservation Journal, 24(1), 96–109. https://doi.org/10.36953/ECJ.11182282

References

  1. Abdel Rasoul, M., Gabar, A. I., EI-Zeiny, H. A., & Raffat, A. (2009). Effects of CCC and B-9 at different water regimes on some metabolic aspects of maize plants. Annuals of Agriculture Sciences Cairo, 33, 49-65.
  2. Almeselmani, M., Deshmukh, P. S., & Sairam, R. K. (2006). Kushwaha, S. R. & Singh, T. P., Protective role of antioxidant enzymes under high temperature stress. Plant Sciences, 171, 382–388. DOI: https://doi.org/10.1016/j.plantsci.2006.04.009
  3. Anonymous, (2017). Agricultural statistics at a glance, Government of India Ministry of agriculture & Farmers Welfare Department of Agriculture, Cooperation & Farmers Welfare Directorate of Economics and Statistics, pp. 105.
  4. Arpád Illés, Nasir Mousavi, S. M., Csaba Bojtor, & Janos Nagy, (2020). The plant nutrition impact on the quality and quantity parameters of maize hybrids grain yield based on different statistical methods. Cereal Research Communications, 48(4), 565-573. DOI: https://doi.org/10.1007/s42976-020-00074-5
  5. Babu, N. R., & Devraj, V. R. (2008). High temperature and salt stress response in French bean (Phaseolus vulgaris). Australian Journal of Crop Sciences, 2, 40–48.
  6. Barker, A. V. (2012). Plant growth in response to phosphorus fertilizers in acidic soil amended with limestone or organic matter. Communications in Soil Science and Plant Analysis, 43(13), 1800–1810. DOI: https://doi.org/10.1080/00103624.2012.684829
  7. Bindhani, A., Barik, K. C., Garnayak, F. M., & Mahapatra, P. L. (2007). Productivity and nitrogen use efficiency of baby corn (Zea mays L.) at different level and time of nitrogen application under rainfed condition. Indian Journal of Agricultural Sciences, 78, 629-631.
  8. Cai, H., Chu, Q., Yuan, L., Liu, J., Chen, X., Chen, F., & Zhang, F. (2012). Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Molecular Breeding, 30(1), 251–266. DOI: https://doi.org/10.1007/s11032-011-9615-5
  9. Chaves, M. D., Maroco, J. P., & Pereira, J. S. (2013). Understanding-plant responses to drought from genes to the whole plant. Functional Plant Botany, 30, 239-264. DOI: https://doi.org/10.1071/FP02076
  10. Dejene Getahun, Abraham Feyisa, Lello Dejene & Dereje Girma, (2020). Soil Test Based Crop Response Phosphorus Calibration Study on Bread Wheat in Degem District of North Shewa Zone, Oromia. International Journal of Economy, Energy and Environment, 5(1), 1-5. DOI: https://doi.org/10.11648/j.ijeee.20200501.11
  11. Dibaba, D. H., Hunshal, C. S., Hiremath, S. M., Awaknavar, J. S., Wali, M. C., Nadagouda, B. T., & Chandrashekar, C. P. (2013). Performance of maize (Zea mays L.) hybrids as influenced by different levels of nitrogen, phosphorus, potassium and sulfur application. Karnataka Journal of Agricultural Sciences, 26(2), 194-199.
  12. Gao, C., El-Sawah, A. M., Ali, D. F. I., Hamoud, Y. A., Shaghaleh, H., & Sheteiwy, M. S. (2020). The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy, 10(3), 319. DOI: https://doi.org/10.3390/agronomy10030319
  13. Hearn, S. (2014). 12th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition, and Environmental Security. Bangkok, Thailand; 30 October–1 November.
  14. Hejazi, P., Mousavi, S. M. N., Mostafavi, K., Ghomshei, M. S., Hejazi, S., & Mousavi, S. M. N. (2013). Study on hybrids maize response for drought tolerance index. Advances in Environment and Biology, 7(2), 333–338.
  15. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis of Fourth Assessment Report. Published Online 17 November. DOI: https://doi.org/10.1017/CBO9780511546013
  16. Iqbal, S., Khan, H. Z., Akbar, N., Zamir, M. S. I., & Javeed, H. M. R. (2013). Nitrogen management studies in maize (Zea mays L.) hybrids. Cercetari Agronomice în Moldova, 46(3), 39–48. DOI: https://doi.org/10.2478/v10298-012-0091-9
  17. Jackson, M. L. (1973). Soil Chemical Analysis, Prentice Hall of India, Pvt. Ltd., New Delhi, pp. 498.
  18. Jadhav, S. J. (2018). Effect of irrigation scheduling and fertilizer levels on growth and yield of summer maize (Zea mays L.), M.Sc. (Agri.) Thesis, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani.
  19. Jagadish, K. S. V., Cairn, J. E., Kumar, A., Somayanda, I. M., & Craufurd, P. Q. (2011). Does susceptibility to heat stress confound screening for drought tolerance in rice? Functional Plant Biology, 38, 261–269. DOI: https://doi.org/10.1071/FP10224
  20. Jat, V. (2006). Effect of fertilizer levels with different dates of sowing on growth, yield and quality of sweet corn (Zea mays saccharata) for table purpose. M. Sc. (Agri.) Thesis submitted for to Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar (M.S.).
  21. Karasu, A. (2012). Effect of nitrogen levels on grain yield and some attributes of some hybrid maize cultivars (Zea mays indentata Sturt.) grown for silage as second crop. Bulgarian Journal of Agricultural Sciences, 18, 42-48.
  22. Koocheki, A., & Khajehosseini, M. (2008). Modern agronomy. Publication of Jihad-e-Daneshgahi of Mashhad, Mashhad, pp 147–168.
  23. Kumar, A., Singh, R., Rao, L., & Singh, U. K. (2008). Effect of integrated nitrogen management on growth and yield of maize (Zea mays L.) cv. PAC-711. Madras Agricultural Journal, 95(7), 467-472.
  24. Kumar, A., & Thakur, K. S. (2004). Effect of integrated nutrient management on promising composite maize (Zea mays L.) varieties under rainfed mid-hill conditions of Himachal Pradesh. Indian Journal of Agricultural Sciences, 74 (1), 40-42.
  25. Kumar, S., Gupta, D., & Nayyar, H. (2012). Comparative response of maize and rice genotypes to heat stress: status of oxidative stress and antioxidants. Acta Physiologiae Plantarum, 34, 75−86. DOI: https://doi.org/10.1007/s11738-011-0806-9
  26. Kurne, R. A., Jadhav, Y. R., & Khot, G. G. (2017). Response of sweet corn to different fertilizers levels and plant densities in summer season. Trends in Bioscience, 10(23), 4811-4814.
  27. Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1, 42–45. DOI: https://doi.org/10.1038/nclimate1043
  28. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation and needs for food security in 2030. Science, 319, 607–610. DOI: https://doi.org/10.1126/science.1152339
  29. Lobell, D. B., & Schlenker, W. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620. DOI: https://doi.org/10.1126/science.1204531
  30. Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2:186–189. DOI: https://doi.org/10.1038/nclimate1356
  31. Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667−681. DOI: https://doi.org/10.1023/A:1014826730024
  32. Majid, M. A., Saiful, I. M., Sabagh, A. E., Hasan, M. K., Saddam, M. O., Barutcular, C., Ratnasekera, D., Abdelaal, K. A. A., & Islam, M. S. (2017). Influence of varying nitrogen levels on growth, yield and nitrogen use efficiency of hybrid maize (Zea mays). Journal of Experimental Biology and Agricultural Sciences, 5(2), 134-142. DOI: https://doi.org/10.18006/2017.5(2).134.142
  33. Massey, J. X., & Gaur, B. L. (2006). Effect of plant population and fertility levels on growth and NPK uptake by sweet corn (Zea mays L.) cultivars. Annals of Agriculture Research New Series, 27(4), 365-368.
  34. Meena, O., Khafi, H. R., Shekh, M. A., Mehta, A. C., & Davda, B. K. (2007). Effect of vermicompost and nitrogen on content, uptake and yield of rabi maize. Crop Research, 33(1-3), 53-54.
  35. Meseka, S., Abebe Menkir, Bunmi Bossey, & Wende Mengesha (2018). Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agronomy, 8(274), 1-17. DOI: https://doi.org/10.3390/agronomy8120274
  36. Mohamed, M. A., Sekar, S., Manoharan, S., Muthukrishnan, P., Subramanian, K. S., & Vincent, S. (2010). Influence of fertilizer levels and growth regulating substances on growth, nutrient use efficiency and yield of hybrid maize. Madras Agricultural Journal, 97(1-3), 68-72.
  37. Mousavi, S. M. N., Kith, K., & Nagy, J. (2019). Effect of interaction between traits of different genotype maize in six fertilizer level by GGE biplot analysis in Hungary. Progress in Agricultural and Engineering Sciences, 15(1), 23–35. DOI: https://doi.org/10.1556/446.15.2019.1.2
  38. Muhammad, F. J., Waqas, L., Haseeb, A., Muhammad, D. A., & Wazir, R. (2018). Phenology, growth, yield and yield components of maize (Zea mays L.) hybrids to different levels of mineral potassium under semiarid climate. International Journal of Environmental Science and Nature Research, 9(5), 1-4.
  39. Muneeb, K., Kamran, K., Sami, U. A., Nawab, A., Muhammad, M. A., Hazrat, U., & Muhammad, O. (2017). Seed yield performance of different maize (Zea mays L.) genotypes under agro climatic conditions of Haripur. International Journal of Environmental Science and Nature Research, 5(5), 1-6. DOI: https://doi.org/10.19080/IJESNR.2017.05.555672
  40. Nagy, J. (2010). Impact of fertilization and irrigation on the correlation between the soil plant analysis development value and yield of maize. Communications in Soil Science and Plant Analysis, 41 (11), 1293–1305. DOI: https://doi.org/10.1080/00103621003759304
  41. Ogata, S., Saneoka, H., & Agata, W. (2016). Cultivar differences in dry matter production and leaf water relations in water stressed maize (Zea mays L.). Grassland Science, 41(4), 294-301.
  42. Oscar, R. V., & Tollenaar, M. (2006). Effect of genotype, nitrogen, plant density and row spacing on the area-per-leaf profile in maize. Agronomy Journal, 98, 94-99. DOI: https://doi.org/10.2134/agronj2005.0111
  43. Patil, D. L., Jadhav, Y. R., & Patil, J. B. (2018). Response of baby corn to fertilizer levels during summer season. International Journal of Chemical Studies, 6(6), 48-50.
  44. Pepo, P., & Karancsi, G. L. (2017). Effect of fertilization on the NPK uptake of different maize (Zea mays L.) genotypes. Cereal Research Communications, 45(4), 699–710. DOI: https://doi.org/10.1556/0806.45.2017.046
  45. Pradhan, G. P., Prasad, P. W., Fritz, A. K., Kirkham, M. B., & Gill, B. S. (2012). Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology, 39, 190–198. DOI: https://doi.org/10.1071/FP11245
  46. Pye-Smith, C. (2011). Farming’s Climate-Smart Future: Placing Agriculture at the Heart of Climate Change Policy; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and Technical Centre for Agricultural and Rural Cooperation (CTA): Wageningen, The Netherlands.
  47. Raju, M. S., Srinivas, A., & Raju, V. (1997). Performance of promising pre-released maize varieties to different nitrogen levels under rainfed conditions. Annals of Arid Zone, 36(4), 377-379.
  48. Saifi, M. Y., Akhtar, M., & Mohsan, S. (2018). Differential genotypic response to heat stress in maize. Sarhad Journal of Agriculture, 14(1), 49-55.
  49. San, M. R., Larque, S. A., & Gutierrez, R. M. (2015). Physiological aspects in texpeno maize with improved drought tolerance. Maydica, 43(2), 137-141.
  50. Setimela, P. S., Magorokosho, C., Lunduka, R., Gasura, E., Makumbi, D., Tarekegne, A., Cairns, J. E., Ndhele, T., Erenstein, O., & Mwangi, W. (2017). On-farm yield gains with stress tolerant maize in Eastern and Southern Africa. Agronomy Journal, 109, 406-417. DOI: https://doi.org/10.2134/agronj2015.0540
  51. Sharar, M., Ayub, S. M., Nadeem, M., & Ahmad, N. (2003). Effect of different rates of nitrogen and phosphorus on growth and grain yield of maize (Zea mays L). Asian Journal of Plant Sciences, 2, 347-349. DOI: https://doi.org/10.3923/ajps.2003.347.349
  52. Siam, H. S., Kader, E. M. G. A., & Alia, E. H. I. (2008). Yield and yield component of maize as affected by different sources and application rates of N fertilizers. Research Journal of Agricultural and Biological Sciences, 4, 399-412.
  53. Srikanth, M., Mohamed, M. A., Muthukrishnan, P., & Subramanian, K. S. (2009). Nutrient uptake and yield of hybrid maize (Zea mays L.) and soil nutrient status as influenced by plant density and fertilizer levels. International Journal of Agricultural Sciences, 5, 193-196.
  54. Stickler, F. C., Wearden, S., & Paul, A. W. (1961). Leaf area determination in grain sorghum. Agronomy Journal, 53, 187-188. DOI: https://doi.org/10.2134/agronj1961.00021962005300030018x
  55. Subbaiah, B. Y., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25, 259-260.
  56. Sultan, B., & Gaetani, M. (2016). Agriculture in West Africa: Climate change and impacts scenarios and potential for adaptation. Frontiers of Plant Science, pp. 7. DOI: https://doi.org/10.3389/fpls.2016.01262
  57. Széles, A., Nagy, J., Rátonyi, T., & Harsányi, E. (2019). Efect of diferential fertilization treatments on maize hybrid quality and performance under environmental stress condition in Hungary. Maydica, 64(2), 14.
  58. Tesfaye, K., Sonder, K., Cairns, J., Magorokosho, C., Tarekegne, A., Kassie, G. T., Getaneh, F., Abdoulaye, T., Abate, T., & Erenstein, O. (2016). Targeting drought tolerant maize varieties in southern Africa: a geospatial crop modelling approach using big data. International Food and Agribusiness Management Reviews, IFAMA, 19, 75-92.
  59. Tomar, S. S., Adesh, S., Ashish, D., Rahul, S., Naresh, R. K., Vineet, K., Saurabh, T., Ankit, S. Y., Siddhart, N. R., & Brajendra, P. S. (2017). Effect of integrated nutrient management for sustainable production system of maize (Zea mays L.) in indo-gangetic plain zone of India. International. Journal of Chemical Studies, 5(2), 310-316.
  60. Vani, B., Saradhi, P. P., & Mohanty, P. (2001). Alteration in chloroplast structure and thylakoid membrane composition due to in vitro heat treatment of rice seedlings: Correlation with the functional changes. Journal of Plant Physiology, 158, 583–592. DOI: https://doi.org/10.1078/0176-1617-00260
  61. Watson, D. J. (1952). The physiological basis of variation in yield. Advances in Agronomy, 4, 101-145. DOI: https://doi.org/10.1016/S0065-2113(08)60307-7
  62. Wu, L., & Liu, M. (2008). Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydrate Polymers, 72, 240–247. DOI: https://doi.org/10.1016/j.carbpol.2007.08.020
  63. Xu, S., Li, J., Zhang, X., Wei, H., & Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274–285. DOI: https://doi.org/10.1016/j.envexpbot.2005.03.002
  64. Zothanmawi, Edwin, L., & Mariam, P. S. A. (2018). Growth and yield of hybrid maize as influence by levels of nitrogen and biofertilizer. International Journal of Current Microbiology and Applied Sciences, 7(8), 1864-1873. DOI: https://doi.org/10.20546/ijcmas.2018.708.214