Main Article Content


The morphometric analysis was carried out on the Halayapura micro-watershed in Karnataka, India. Using ArcGIS 10.2.2 and applying the DEM model, the micro-watershed was subjected to quantitative investigation to determine the channel network involved and understand geo-hydrological behavior. In addition, remote sensing and geospatial techniques were used to study the micro-watershed drainage analysis and its associated parameters, such as stream order, stream length, stream frequency, drainage density, texture ratio, form factor, circulatory ratio, elongation ratio, bifurcation ratio, and compactness coefficient for the micro watershed, were evaluated. According to the findings, the stream order ranges from I to IV, with 97 streams in the micro-watershed. Streams of 72, 19, 5, and 1 are found in the I, II III, and IV order, respectively. The bifurcation values range from 3.78 to 5.00, with the average weight around 3.14. The elongation ratio and farm factor are 0.77 and 0.46, respectively. The drainage density of the micro watershed is 5.20 km/km2. The form factor, circularity, and elongation ratio contribute to a basin with an elongated shape through decreased flood proneness, erosion, and sediment transport capacity. The results of the micro-watershed morphometric assessment are critical for evaluating and managing water resources and selecting a recharge structure for future water management in the study region.


DEM Drainage pattern Halayapura micro-watershed Morphometric parameters RS and GIS

Article Details

How to Cite
Srinivas, V. K., B C, R. K., A, S., & Murukannappa. (2023). The study of morphological characteristics for best management practices over the Halayapura micro-watershed of Karnataka, India, using remote sensing and geospatial techniques. Environment Conservation Journal, 24(1), 71–81.


  1. Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: a remote sensing and GIS approach. Journal of Hydrology, 511, 850-860. 1016/j.jhydrol.2014.02.028. DOI:
  2. Akram, J., Khanday, M. Y., & Rais, S. (2011). Watershed prioritization using morphometric and landuse/landcover parameters: a remote sensing and GIS approach. J Geol Soc India, 78, 63-75. doi: 10.1007/s12594-011-0068-6. DOI:
  3. Anderson, M. P. (1989). Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geological Society of America Bulletin, 101(4), 501-511. . https :// DOI:<0501:HFMTDL>2.3.CO;2
  4. Angillieri, M. Y. E. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina Environ Geol 55, 1, 107-111. doi: 10.1007/s00254-007-0969-2. DOI:
  5. Bisen, D. K., and Kudnar, N. S. (2013). “A Sustainable Use and Management of Water Resource of the Wainganga River Basin”, A Traditional Management Systems. https :// 3.v1.
  6. Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub basin using remote sensing and GIS techniques. International Journal of geomatics and geosciences, 2(1), 311.
  7. Chopra, R., Dhiman, R. D., & Sharma, P. K. (2005). Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 531-539. DOI:
  8. Eze, E. B., & Efiong, J. (2010). Morphometric parameters of the Calabar River basin: implication for hydrologic processes. Journal of Geography and Geology, 2(1), 18. doi: 10.5539/jpg.v2n1p18. DOI:
  9. Gaikwad, R., & Bhagat, V. (2018). Multi-criteria prioritization for sub-watersheds in medium river basin using AHP and influence approaches. Hydrosp Anal Gatha Cognit. https :// /gcj3.18020 105.
  10. Gajbhiye, S., Mishra, S. K., & Pandey, A. (2014). Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Applied Water Science, 4(1), 51-61. doi: 10.1007/s13201-013-0129-7. DOI:
  11. Ghosh, D., and Saha, S. (2019). “Spatio-temporal variability of channel behavior about channel braiding: a milieu of topological braid modeling and traditional quantitative analysis of Chel basin (North Bengal)," Modeling Earth Systems and Environment, 5, 4, 1663-1678. https :// 8-019-00616 -9. DOI:
  12. Gunjan, P., Mishra, S. K., Lohani, A. K., & Chandniha, S. K. (2020). The study of morphological characteristics for best management practices over the Rampur watershed of Mahanadi River Basin using prioritization. Journal of the Indian Society of Remote Sensing, 48(1), 35-45. DOI:
  13. Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American geophysical union, 13(1), 350-361. https :// i001p 00350. DOI:
  14. Horton, R. E. (1945). “Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology," Bulletin of the Geological Society of America, 56, 2, 75-3. Progress in Physical Geography, 19(4), 533-554. https :// 7606. DOI:
  15. Kadam, A. K., Jaweed, T. H., Umrikar, B. N., Hussain, K., & Sankhua, R. N. (2017). Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique. Modeling Earth Systems and Environment, 3(4), 1663-1673. https :// 8-017-0386-9. DOI:
  16. Kumar, D., Singh, D. S., Prajapati, S. K., Khan, I., Gautam, P. K., & Vishawakarma, B. (2018). Morphometric parameters and neotectonics of Kalyani river basin, Ganga plain: a remote sensing and GIS approach. Journal of the Geological Society of India, 91(6), 679-686. doi: 10.1007/s12594-018-0923-9. DOI:
  17. Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environmental Earth Sciences, 64(2), 373-381. DOI:
  18. Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Applied Water Science, 3(2), 467-477. Doi: 10.1007/s13201-013-0095-0. DOI:
  19. Mesa, L. M. (2006). “Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina)," Environmental Geology, 50, 8, 1235-1242. https ://doi. org/10.1007/s0025 4-006-0297-y. DOI:
  20. Miller, V.C. (1953). "A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Varginia, and Tennessee," Columbia University, Department of Geology, ONR, Geography Branch, New York. doi: 10.4236/ars.2013.23023. DOI:
  21. Nag, S. K., & Chakraborty, S. (2003). Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing, 31(1), 25-35. . https :// 30749. DOI:
  22. Nooka Ratnam, K., Srivastava, Y. K., Venkateswara Rao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—remote sensing and GIS perspective. Journal of the Indian society of remote sensing, 33(1), 25-38. 10.1007/BF02989988. DOI:
  23. Palaka, R., & Sankar, G. J. (2016). Study of watershed characteristics using Google Elevation Service. Geospatial world.
  24. Panda, B., Venkatesh, M., & Kumar, B. (2019). A GIS-based approach in drainage and morphometric analysis of Ken River basin and sub-basins, Central India. Journal of the Geological Society of India, 93(1), 75-84. doi: 10.1007/s12594-019-1125-9. DOI:
  25. Pankaj, A., & Kumar, P. (2009). GIS-based morphometric analysis of five major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37(1), 157-166. 10.1007/s12524-009-0016-8. DOI:
  26. Patel, D. P., Gajjar, C. A., & Srivastava, P. K. (2013). Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective. Environmental earth sciences, 69(8), 2643-2656. DOI:
  27. Prakash, K., Rawat, D., Singh, S., Chaubey, K., Kanhaiya, S., & Mohanty, T. (2019). Morphometric analysis using SRTM and GIS in synergy with depiction: a case study of the Karmanasa River basin, North central India. Applied Water Science, 9(1), 1-10. doi: 10.1007/s13201-018-0887-3 . DOI:
  28. Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7(1), 217-232. Doi: 10.1007/s13201-014-0238-y. DOI:
  29. Rajasekhar, M., Raju, G. S., Raju, R. S., Ramachandra, M., & Kumar, B. P. (2018). Data on comparative studies of lineaments extraction from ASTER DEM, SRTM, and Cartosat for Jilledubanderu River basin, Anantapur district, AP, India by using remote sensing and GIS. Data in brief, 20, 1676-1682. https :// DOI:
  30. Rekha, B. V., George, A. V., & Rita, M. (2011). Morphometric analysis and micro-watershed prioritization of Peruvanthanam sub-watershed, the Manimala River Basin, Kerala, South India. Environmental Research, Engineering and Management, 57(3), 6-14.
  31. Roohi, M., Soleymani, K., Salimi, M., & Heidari, M. (2020). Numerical evaluation of the general flow hydraulics and estimation of the river plain by solving the Saint–Venant equation. Modeling Earth Systems and Environment, 6(2), 645-658. https :// 8-020-00718 -9. DOI:
  32. Salimi, E. T., Nohegar, A., Malekian, A., Hoseini, M., & Holisaz, A. (2017). Estimating time of concentration in large watersheds. Paddy and Water Environment, 15(1), 123-132. DOI 10.1007/s10333-016-0534-2. DOI:
  33. Sangma, F., & Guru, B. (2020). Watersheds characteristics and prioritization using morphometric parameters and fuzzy analytical hierarchal process (FAHP): a part of lower Subansiri sub-basin. Journal of the Indian Society of Remote Sensing, 48(3), 473-496. DOI:
  34. Schumm, S. A. (1956). “Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin”, 67, 5, 597-646. https :// DOI:[597:EODSAS]2.0.CO;2
  35. Singh, A. P., Arya, A. K., & Singh, D. S. (2020). Morphometric analysis of Ghaghara River Basin, India, using SRTM data and GIS. Journal of the Geological Society of India, 95(2), 169-178. doi: 10.1007/s12594-020-1406-3. DOI:
  36. Singh, P., Thakur, J. K., and Singh, U. C. (2013). “Morphometric analysis of Morar River Basin, Madhya Pradesh, India, using remote sensing and GIS techniques," Environmental Earth Sciences, 68, 7, 1967-1977. doi: 10.1007/s12665-012-1884-8. DOI:
  37. Singh, S., & Singh, M. B. (1997). Morphometric analysis of Kanhar river basin. National geographical Journal of india, 43(1), 31-43.
  38. Smith, K. G. (1950). Standards for grading texture of erosional topography. American journal of Science, 248(9), 655-668. doi: 10.2475/ajs.248.9.655. DOI:
  39. Solanke, P. C., Srivastava, R., Prasad, J., Nagaraju, M. S. S., Saxena, R. K., & Barthwal, A. K. (2005). Application of remote sensing and GIS in watershed characterization and management. Photonirvachak: Journal of the Indian Society of Remote Sensing, 33(2), 239-244. doi: 10.1007/BF02990041. DOI:
  40. Srinivasa Vittala, S., Govindaiah, S., & Honne Gowda, H. (2004). Morphometric analysis of sub-watersheds in the Pavagada area of Tumkur district, South India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 32(4), 351-362. DOI:
  41. Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical DOI:
  42. Union, 38(6), 913-920. https :// i006p 00913.
  43. Strahler, A. N. (1964). “Quantitative geomorphology of drainage basins and channel networks," Handbook of Applied Hydrology: McGraw-Hill, New York, 4-39. https :// 306.2005.95151 03.
  44. Sujatha, Selvakumar, E. R., Rajasimman, U. A. B., and Victor, R. G. ( 2015). “Morphometric analysis of sub-watershed in parts of the Western Ghats, South India using ASTER DEM," Geomatics, Natural Hazards and Risk, 6, 4, 326-341. https :// 705.2013.845114. DOI:
  45. Thakkar, A. K., & Dhiman, S. D. (2007). Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. Journal of the Indian society of Remote Sensing, 35(4), 313-321. DOI:
  46. Thomas, J., Joseph, S., & Thrivikramaji, K. P. (2010). Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India. International Journal of Digital Earth, 3(2), 135-156. doi: 10.1080/17538940903464370. DOI:
  47. Vandermaesen, J., Horemans, B., Bers, K., Vandermeeren, P., Herrmann, S., Sekhar, A., & Springael, D. (2016). Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization. Applied microbiology and biotechnology, 100(17), 7361-7376. https ://doi. org/10.1007/s0025 4-006-0297-y. DOI:
  48. Vijith, H., & Satheesh, R. (2006). GIS based morphometric analysis of two major upland sub-watersheds of Meenachil river in Kerala. Journal of the Indian Society of Remote Sensing, 34(2), 181-185. doi: 10.1007/BF02991823. DOI:
  49. Yadav, S. K., Singh, S. K., Gupta, M., & Srivastava, P. K. (2014). Morphometric analysis of Upper Tons basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS. Geocarto International, 29(8), 895-914. DOI:
  50. Zolekar, R. B., and Bhagat, V. S. (2015). “Multi-criteria land suitability analysis for agriculture in the hilly zone: Remote sensing and GIS approach," Computers and Electronics in Agriculture, 118, 300-321. https :// compag.2015.09.016. DOI: