Main Article Content


Characterization and evaluation of genetic base of exotic collections of germplasm hastens the process of crop breeding. Exotic collections of 25 tomato germplasm accessions along with a local check ‘Vaibhav’ were characterized at morphological, biochemical and DNA marker level in the University of Agricultural Sciences, Bangalore. Both morphometric and biochemical trait data divided the accessions into five clusters by model-based K-means cluster analysis. Accessions EC-620481 and EC-620554 were found highly diverse and promising to broaden the genetic base of breeding stocks in tomato. SSR marker based genetic parameter estimates inferred lower genetic differences at marker loci. However, UPGMA classification displayed similar kind of diversity as exhibited at morphometric level. Traits specific accessions identified have potential to accelerate trait specific breeding for economically important traits. This investigation resulted in the identification of such potential accessions for their use in commercial tomato breeding.


Exotic collections K-means PIC value Trait-specific accessions UPGMA

Article Details

How to Cite
M, A., S, S., C, A., & M.P, B. P. (2022). Morphological, biochemical and SSR marker based genetic diversity and identification of trait-specific accessions in exotic germplasm collection of tomato (Solanum lycopersicum L.). Environment Conservation Journal, 23(3), 113–121.


  1. Anilkumar, C., & Lohithaswa, H. C. (2018). Heterotic hybrid frequency in relation to combining ability and parental genetic divergence in maize. Electronic journal of Plant Breeding, 9(4): 1322-1334. DOI:
  2. Anilkumar, C., Lohithaswa, H. C., & Pavan, R. (2017). Assessment of genetic diversity in newly developed inbred lines of maize (Zea mays L.). Electronic journal of Plant Breeding, 8(1): 193-200. DOI:
  3. Bergougnoux, V. (2014). The history of tomato: from domestication to biopharming. Biotechnology advances, 32:170-189. DOI:
  4. Bose, T. K., Kabir, J., Maity, T. K., Parthasarathy, V. A. & Som, M, G. (2002). Vegetable Crops.1. NayaProkash, Calcutta.
  5. Brake, M. H., Al-Gharaibeh, M. A., Hamasha H. R., Al-Sakarneh, N. S., Alshomali, I. A., Migdadi, H. M., Qaryouti, M. M., & Haddad, N. J. (2021). Assessment of genetic variability among Jordanian tomato landrace using inter-simple sequence repeats markers. Jordan Journal of Biological Sciences, 14(1): 91-95. DOI:
  6. Brunlop, S., & Finckh, M. R. (2010). Application and potentials of markers assisted selection (MAS) in plant breeding. Germany: Federal Agency for Nature Conservation.
  7. Collins, J. K., & Veazie, P. P. (2006). Lycopene from plants to humans. Horticulture Science, 41(5): 1135-1144. DOI:
  8. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus,12:13–15. DOI:
  9. Herraiz, F. J., Vilanova, S., Andujar, I., Torrent, D., Plazas, M., & Gramazio, P. (2015). Morphological and molecular characterization of local varieties, modern cultivars and wild relatives of an emerging vegetable crop, the pepino (Solanum muricatum), provides insight into its diversity, relationships and breeding history. Euphytica, 206(2): 301-318. DOI:
  10. Hussain, K., Lone, S., Malik, A., Masoodi, K. Z., Dar, Z. A., Nazir, N., Ali, G., & Farwah, S. (2021). Genetic variability studies in cherry tomato for growth, yield, and quality traits in open field conditions. International Journal of Agricultural and Applied Sciences, 2(2):60-64.
  11. Johnson, B. C. (1948). Methods of Vitamin Determination. Burgess Publishing Co. Minneapolis, Minnesota, Pp- 98.
  12. Kaushik, S. K., Tomar, D. S., & Dixit, A. K.(2011). Genetics of fruit yield and it’s contributing characters in tomato (Solanum lycopersicum). Journal of Agricultural Biotechnology, 3(10): 209-213. DOI:
  13. Levene, H. (1960). Robust tests for equality of variances. In Contributions to probability and statistics: Essays in honour of Harold Hotelling, ed. Olkin, Stanford University Press, Stanford, Connecticut. 278–92.
  14. Liu, K., Muse, S. V. (2005). Power Marker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21: 2128-2129. DOI:
  15. Milevska, E. M., Popovski, Z. T., Dimitrievska, B. R., & Bandzo, K. (2011). Determination of genetic diversity among different tomato varieties using SSR markers. Acta Agriculturae Serbica, 16(31): 9–17.
  16. Miller,J. C, & Tanksley, S. D. (1990). RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80:437-448. DOI:
  17. Panthee, D. R., Cao, C., Debenport, S. J., Rodrguez, G. R., Labate, J. A., Robertson, L. D., Andrew, P. B., Vander K. E., Brian, B., & Gardener. (2012). Magnitude of genotype x environment interactions affecting tomato fruit quality. Horticulture Science, 47(6): 721–726. DOI:
  18. Pradeepkumar, T., Bastian, D., Joy, M., Radhakrishnan, N. V., Aipe, K. C. (2001). Genetic variability in tomato for yield and resistance to bacterial wilt. Journal of Tropical Agriculture, 39: 157-158.
  19. Ranganna, S. (1976). In: manual of analysis of fruits and vegetable products, McGraw hill, New Delhi., Pp-77.
  20. Reddy, B. R., Reddy, M. P., Begum, H., & Sunil, N. (2013). Genetic diversity studies in tomato (Solanum lycopersicum L.). IOSR Journal of Agriculture and Veterinary Science, 4(2): 53- 55. DOI:
  21. Rick, C. M., Chetelat, R. T., (1995). Utilization of related wild species for tomato improvement. Acta Horticulturae, 412: 21–38. DOI:
  22. Rothan, C., Diouf, I., Causse, M. (2019). Trait Discovery and Editing in Tomato. Plant Journal, 97:73-90. DOI:
  23. RStudio Team (2019). RStudio: integrated development for R. RStudio, Inc., Boston.