Main Article Content

Abstract

The present study was undertaken with the objective to assess the nature and magnitude of gene action for various morpho-physiological and biochemical traits in two crosses namely cross BHU 31 × HD 2733 and cross, HPYT 485 × HD 2967 in wheat. The six basic generations (P1, P2, F1, F2, B1 and B2 obtained from these crosses (made in Rabi 2018 and 2019) were evaluated for 13 quantitative traits including yield and micronutrient traits during Rabi 2020 in compact family block design with 3 replications at Research farm, RPCAU, Pusa and data were recorded on randomly selected plants per replication of each cross for all the traits. The estimation of micronutrient in wheat grains was done by X-Ray Fluorescence Spectrometry at Harvest-plus Division, ICRISAT, Hyderabad. The result regarding gene effect indicated that in both the crosses dominance and dominance × dominance effect for grain Zinc content (-29.00 & 19.18 and -9.79 & 7.04 respectively in cross I and II) and grain Iron content (-18.16 & 12.37 and -20.29 & 12.31 respectively in cross I and II) has significant role in expression of these traits. Duplicate type of gene interaction was found predominant for grain Zinc and Iron content and almost for all the traits due to opposite sign of dominance (h) and dominance × dominance (l) gene effect which tends to cancel the effect of each other in hybrid combination therefore selection should be advanced in later generation.

Keywords

Bread wheat Duplicate gene action Gene interaction Grain Iron content Grain Zinc content

Article Details

How to Cite
Jaiswal, P., Jha, B., Singh , S. K., Singh , M. K., & Parveen, R. (2023). Assessment of gene action for morpho-physiological and biochemical trait in bread wheat (Triticum aestivum L.). Environment Conservation Journal, 24(1), 60–70. https://doi.org/10.36953/ECJ.10832262

References

  1. Abbasi, S., Baghizadeh, A., Mohammadi-Nejad, G., and Nakhoda, B. (2014). Genetic analysis of grain yield and its components in bread wheat (Triticum aestivum L.). Annual Research & Review in Biology. 3636-3644. DOI: https://doi.org/10.9734/ARRB/2014/7565
  2. Abedi, J., Baghizadeh, A., and Mohammadi-Nejad, G. (2015). Genetic analysis for some of morphological traits in bread wheat under drought stress condition using generations mean analysis. Journal of Stress Physiology & Biochemistry. 11(2).
  3. Amiri, R., Bahraminejad, S., Cheghamirza, K., and Arzani, A. (2020). Genetic analysis of iron and zinc concentrations in bread wheat grains. Journal of Cereal Science. 95: 103077. DOI: https://doi.org/10.1016/j.jcs.2020.103077
  4. Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V., & Pfeiffer, W. H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food and nutrition bulletin, 32(1_suppl1), S31-S40. DOI: https://doi.org/10.1177/15648265110321S105
  5. Cavalii L. L. (1952). An analysis of linkage in quantitative inheritance (ed. E. C. R. Reive and C. H. Waddington), pp 135–144. HMSO, London.
  6. Ceballos H.(1996). Manual de genética cuantitativa y mejoramiento genético. Universidad Nacional de Colombia,Palmira.pp. 337.
  7. Dvojkovic, K., Drezner, G., and Novoselovic, D. (2010). Estimation of some genetic parameters through generation mean analysis in two winter wheat crosses. Periodicum biologorum. 112(3): 247-251.
  8. Erkul, A., Aydin, U. N. A. Y., and Konak, C. (2010). Inheritance of yield and yield components in a bread wheat (Triticum aestivum L.) cross. Turkish Journal of Field Crops. 15(2): 137-140.
  9. Fethi, B. (2010). Epistasis and genotype-by-environment interaction of grain yield related traits in durum wheat. Journal of Plant Breeding and Crop Science. 2(2): 024-029.
  10. Gaddameedi, A., Ravikiran, K. T., Mohammed, R., Phuke, R. M., Sadaiah, K., Kishor, P. K., and Kumar, A. A. (2018). Inheritance studies on grain iron and zinc concentration and agronomic traits in sorghum [Sorghum bicolor (L.) Moench]. Journal of Cereal Science. 83: 252-258. DOI: https://doi.org/10.1016/j.jcs.2018.09.007
  11. Hayman, B.I. (1958). The separation of epistasis from additive and dominance variation in generation means. Heredity, 12,371-391. DOI: https://doi.org/10.1038/hdy.1958.36
  12. India. Ministry of Agriculture and Farmers Welfare, Government of India. Department of Agriculture, Cooperation & Farmers Welfare (2020). Annual report 2019-2020. New Delhi. Krishi Bhawan. 252p.
  13. Jinks, J. L., and Jones, R. M. (1958). Estimation of the components of heterosis. Genetics. 43(2): 223. DOI: https://doi.org/10.1093/genetics/43.2.223
  14. Johnson, H.W., Robinson, H.F. and. Comstock, R.E. (1955). Estimates of genetic and environmental variability in soybeans, Agronomy Journal,47, 314-318. DOI: https://doi.org/10.2134/agronj1955.00021962004700070009x
  15. Kearsey, M. J. & Pooni, H. S. (1996) The genetical analysis of quantitative traits. 1st ed. Chapman and Hall, London, pp 46. DOI: https://doi.org/10.1007/978-1-4899-4441-2_1
  16. Kumar, P., Yadava, R. K., Gollen, B., and Sheoran, O. P. (2013). Gene effects for different traits of spike morphology in wheat (Triticum aestivum). Indian Journal of Agricultura Sciences,83(7), 748-757.
  17. Ljubicic, N. D., Petrovic, S. R., Dimitrijevic, M., and Hristov, N. S. (2016). Gene actions involved in the inheritance of yield related traits in bread wheat (Triticum aestivum L.). Emirates Journal of Food and Agriculture, 477-484. DOI: https://doi.org/10.9755/ejfa.2016-02-117
  18. Manivannan N. 2014. TNAUSTAT-Statistical package. In: https://sites.google.com/site/tnaustat
  19. Mather, K. (1949). Biometrical Genetics: The study of continuous variation. Methuen and Company Limited, London.
  20. Mather K. and Jinks I.L.(1982). Biometrical Genetics. 3th ed. Chapman and Hall, London,pp 65-83. DOI: https://doi.org/10.1007/978-1-4899-3406-2_5
  21. Mohamed, N. E. M. (2014). Genetic control for some traits using generation mean analysis in bread wheat (Triticum aestivum L.). International Journal of Plant & Soil Science,3(9),1055-1068. DOI: https://doi.org/10.9734/IJPSS/2014/10730
  22. Ninghot, C. J., Boratkar, M.V., Thawari,S. B. and Potdukhe, N. R. (2016). Generation Mean Analysis for Yield and Yield Components in Wheat (Triticum aestivum L.). International Journal of Genetics. 8 (4): 204-206.
  23. Ninghot, C. J., Boratlcar, M. V., Thawari, S. B., & Potdukhe, N. R. (2016). Generation mean analysis for yield and yield components in Wheat (Triticum aestivum L.),International Journal of Genetics,4 (8), 204-206.
  24. Raikwar, R. S. (2019). Genetic architecture of yield and quality traits in wheat (Triticum aestivum L.), Indian J. Genet.,79(1),100-103. DOI: https://doi.org/10.31742/IJGPB.79.1.14
  25. Reynolds, M., Foulkes, J., Furbank, R., Griffiths, S., King, J., Murchie, E. and Slafer, G. (2012). Achieving yield gains in wheat. Plant, Cell & Environment, 35(10): 1799-1823. DOI: https://doi.org/10.1111/j.1365-3040.2012.02588.x
  26. Robinson, H. F., Cornstock, R.E., and Harvey, P.M. (1949). Estimates of heritability and degree of dominance in corn. Agronomy Journal,41, 353-359. DOI: https://doi.org/10.2134/agronj1949.00021962004100080005x
  27. Said, A. A. (2014). Generation mean analysis in wheat (Triticum aestivum L.) under drought stress conditions. Annals of Agricultural Science,59(2),177–184. DOI: https://doi.org/10.1016/j.aoas.2014.11.003
  28. Thapa, R. S., Sharma, P. K., Pratap, D., Singh, T., and Kumar, A. (2019). Assessment of genetic variability, heritability and genetic advance in wheat (Triticum aestivum L.) genotypes under normal and heat stress environment. Indian Journal of Agricultural Research,53(1),51-56. DOI: https://doi.org/10.18805/IJARe.A-5095
  29. Tilahun, B., Habtamu, T., and Tesfaye, L. (2020). Genetic variability, heritability and genetic advance among bread wheat genotypes at Southeastern Ethiopia. Agriculture, Forestry and Fisheries, 9,128-134. DOI: https://doi.org/10.11648/j.aff.20200904.15
  30. Uzokwe VNE, Asafo-Adjei B, Fawole I, Abaidoo R, Odeh IOA, Ojo DK, Daxshiell K and Sanginga N.(2017). Generation mean analysis of phosphorus-use efficiency in freely nodulating soybean crosses grown in low-phosphorus soil. Plant Breeding 136(2): 139– 146. doi: 10.1111/pbr.12453 DOI: https://doi.org/10.1111/pbr.12453
  31. Usman, I., and Muhammad, K. (2013). Genetic study of quantitative traits in spring wheat through generation means analysis. American-Eurasian Journal of Agricultural & Environmental Sciences,13(2),191-197.
  32. Velu, G., Singh, R. P., Crespo-Herrera, L., Juliana, P., Dreisigacker, S., Valluru, R., and Joshi, A. K. (2018). Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Scientific Reports,8(1),1-10. DOI: https://doi.org/10.1038/s41598-018-31951-z
  33. Velu, G., Singh, R. P., Huerta, J., & Guzmán, C. (2017). Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crops Research, 214, 373-377. DOI: https://doi.org/10.1016/j.fcr.2017.09.030
  34. Velu, G., Tutus, Y., Gomez-Becerra, H. F., Hao, Y., Demir, L., Kara, R., and Cakmak, I. (2017). QTL mapping for grain zinc and iron concentrations and zinc efficiency in a tetraploid and hexaploid wheat mapping populations. Plant and Soil,411(1-2), 81-99. DOI: https://doi.org/10.1007/s11104-016-3025-8