Main Article Content


The expeditious industrialization is helping the world to give a new modern era with all sorts of amenities. But the consequences are following great risks that might result in a terrifying future. Heavy metal pollution and its hazardous effects are one of them. Though India is the 3rd largest chromium producing country and the Sukinda valley of Odisha, is the chief source for chromium, hence here the threat of chromium pollution is at a high point. Countermeasures to this problem have become of prime importance. Among several remedial measures, bioremediation is an approaching process to control the accelerated growth of heavy metal contamination including chromium. In the world of microorganisms, the congenital characteristics of fungi have great importance as they can grow easily in polluted habitats. Again, there is evidence of native fungi having the potential to bind with heavy metals and remove toxic agents from natural environments. The pathway of chromium toxicity and its possible remediation potential by fungi have been studied extensively in the Sukinda area. This study signifies some positive aspects that can be practised in the future as a convenient option for bioremediation. Fungal bioremediation improved with biotechnology tools will be suitable output for rapid remediation which is vital for this moment.


bioremediation chromium toxicity fungal remediation heavy metal stress hexavalent chromium sukinda

Article Details

Author Biography

Debasis Dash, Department of Botany, College of Basic Science and Humanities, Orissa University of Agriculture and Technology (OUAT), Bhubaneswar-, India.

Present position Sr asst prof
#Passed Msc,MPhil and ,phD from Utkal University
#21 research papers and book chapters
#Instrumental in uplifting the college to PG and PhD level.
#Imparting teaching in basicsc,forest botany,pre requisite agriculture
# recipients of several awards including one from American biographical society for best teacher
 Research area...Microbiology plant physiology with focus on environmental factors

How to Cite
Subhadarsini, S., & Dash, D. (2022). Possible remediation of hexavalent chromium by native fungi of Sukinda mining area: a review. Environment Conservation Journal, 23(3), 425–438.


  1. Agency for Toxic Substances and Disease Registry, USA. 2017. CERCLA Priority List of Hazardous Substances. Available online: (accessed on 20 September 2019).
  2. Akhtar, N., & Mannan, M. A. (2020). Mycoremediation: Expunging environmental pollutants. Biotechnology Reports , 26, e00452. DOI:
  3. Alvarez, C. C., Bravo Gómez, M. E., & Hernández Zavala, A. (2021). Hexavalent chromium: Regulation and health effects. Journal Of Trace Elements In Medicine And Biology: Organ Of The Society For Minerals And Trace Elements (GMS), 65, 126729. DOI:
  4. Amatussalam, Abubacker A, Ramaswamy M, Babu. (2011). In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium. Indian Journal of Experimental Biology, 49, 925-931. DOI:
  5. Arshi, A., & Singh, A. (2021). Bioremediation of Hexavalent Chromium from Industrial Effluents. In Emerging Treatment Technologies for Waste Management , 29-52.. DOI:
  6. Asha L. P. and Sandeep R. S., (2013). Review on Bioremediation- Potential Tool for Removing Environmental Pollution, International Journal of Basic and Applied Chemical Sciences,3(3), 21-33.
  7. Bahi J. S., Radziah O., Samsuri A. W., Aminudin H. and Fardin S., 2012. Bioleaching of Heavy Metals from Mine Tailings, Bioremediation Journal, 57-65. DOI:
  8. Bakshi, A., & Panigrahi, A. K. (2022). Chromium Contamination in Soil and Its Bioremediation: An Overview. Advances in Bioremediation and Phytoremediation for Sustainable Soil Management, 229-248. DOI:
  9. Bellion, M., Courbot, M., Jacob, C., Blaudez, D., & Chalot, M. (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254(2), 173-181. DOI:
  10. Bennett, R. M., Cordero, P. R. F., Bautista, G. S., & Dedeles, G. R. (2013). Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chemistry and Ecology, 29(4), 320-328. DOI:
  11. Bhutiani, R., & Ahamad, F. (2018). Efficiency assessment of Sand Intermittent Filtration Technology for waste water Treatment. International Journal of advance research in science and engineering (IJARSE), 7(03), 503-512.
  12. Bhutiani, R., Ahamad, F., & Ruhela, M. (2021). Effect of composition and depth of filter-bed on the efficiency of Sand-intermittent-filter treating the Industrial wastewater at Haridwar, India. Journal of Applied and Natural Science, 13(1), 88-94. DOI:
  13. Bhutiani, R., Rai, N., Kumar, N., Rausa, M., & Ahamad, F. (2019). Treatment of industrial waste water using Water hyacinth (Eichornia crassipus) and Duckweed (Lemna minor): A Comparative study. Environment Conservation Journal, 20(1&2), 15-25. DOI:
  14. Blacksmith Institute. (2007). The World's Worst Polluted Places: The Top Ten of The Dirty Thirty. Final Report. 16-17.
  15. Chauhan, P., Tiwari, R. C., Bhutiani, R., & Ahamad, F. (2019). Study of Aragvadha (Cassia fistula Linn.) with special reference to phyto-pharmacological properties: An overview. Environment Conservation Journal, 20(1&2), 133-138. DOI:
  16. Chen, C., & Wang, J. L. (2007). Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomedical and Environmental Sciences: BES, 20(6), 478-482.
  17. Chrysochoou, M., & Johnston, C. P. (2015). Polysulfide speciation and reactivity in chromate-contaminated soil. Journal of Hazardous Materials, 281, 87-94. DOI:
  18. Clementino, M., Shi, X., & Zhang, Z. (2018). Oxidative stress and metabolic reprogramming in Cr (VI) carcinogenesis. Current Opinion In Toxicology, 8, 20-27. DOI:
  19. Czakó-Vér, K., Batiè, M., Raspor, P., Sipiczki, M., & Pesti, M. (1999). Hexavalent chromium uptake by sensitive and tolerant mutants of Schizo saccharomyces pombe. FEMS Microbiology Letters, 178(1), 109-115. DOI:
  20. Das, A. P., & Mishra, S. (2010). Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. Journal of Carcinogenesis, 9. DOI:
  21. Das, A. P., & Singh, S. (2011). Occupational health assessment of chromite toxicity among Indian miners. Indian Journal of Occupational and Environmental Medicine, 15(1), 6. DOI:
  22. Dehghani, M. H., Taher, M. M., Bajpai, A. K., Heibati, B., Tyagi, I., Asif, M., ... & Gupta, V. K. (2015). Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chemical Engineering Journal, 279, 344-352. DOI:
  23. Dell'Anno, A., Beolchini, F., Rocchetti, L., Luna, G. M., & Danovaro, R. (2012). High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environmental Pollution, 167, 85-92. DOI:
  24. den Braver-Sewradj, S. P., van Benthem, J., Staal, Y. C., Ezendam, J., Piersma, A. H., & Hessel, E. V. (2021). Occupational exposure to hexavalent chromium. Part II. Hazard assessment of carcinogenic effects. Regulatory Toxicology and Pharmacology, 126, 105045. DOI:
  25. Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of hazardous materials, 250, 272-291. DOI:
  26. EPA (ENVIRONMENTAL PROTECTION AGENCY) RESEARCH OUTLOOK, 1984. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/9-84/004 (NTIS PB84194562), 1984.
  27. EPA (U.S. Environmental Protection Agency). 2004h. Nationwide Identification of Hardrock Mining Sites. Evaluation report. Report No. 2004-P-00005. Office of Inspector General, U.S. Environmental Protection Agency,Washington,DC.March 31, 2004 [online]. Available: [accessed Dec. 5, 2006].
  28. EPA. Designation of hazardous substances. Washington, DC: U.S. Environmental Protection Agency; 1998a. Code of Federal Regulations. 40 CFR 302.4.
  29. Fenti, A., Chianese, S., Iovino, P., Musmarra, D., & Salvestrini, S. (2020). Cr (VI) sorption from aqueous solution: a review. Applied Sciences, 10(18), 6477. DOI:
  30. Fernández, P. M., Viñarta, S. C., Bernal, A. R., Cruz, E. L., & Figueroa, L. I. (2018). Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere, 208, 139-148. DOI:
  31. Garbisu, C., Alkorta, I., Llama, M. J., & Serra, J. L. (1998). Aerobic chromate reduction by Bacillus subtilis. Biodegradation, 9(2), 133-141. DOI:
  32. Gili, P., Mederos, A., Lorenzo-Luis, P. A., de la Rosa, E. M., & Muñoz, A. (2002). On the interaction of compounds of chromium (VI) with hydrogen peroxide. A study of chromium (VI) and (V) peroxides in the acid–basic pH range. Inorganica chimica acta, 331(1), 16-24. DOI:
  33. Gupta, V. K., Chandra, R., Tyagi, I., & Verma, M. (2016). Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. Journal of colloid and interface science, 478, 54-62. DOI:
  34. Halasova, E., Matakova, T., Kavcova, E., Musak, L., Letkova, L., Adamkov, M., ... & Singliar, A. (2009). Human lung cancer and hexavalent chromium exposure. Neuroendocrinology Letters, 30(1), 182-185.
  35. Infante J, C., De Arco R, D., & Angulo M, E. (2014). Removal of lead, mercury and nickel using the yeast Saccharomyces cerevisiae. Revista MVZ Córdoba, 19(2), 4141-4149. DOI:
  36. Irfan, S., Ranjha, M. M. A. N., Shafique, B., Ullah, M. I., Siddiqui, A. R., & Wang, L. (2022). Bioremediation of Soil: An Overview. Advances in Bioremediation and Phytoremediation for Sustainable Soil Management, 1-16. DOI:
  37. Jagupilla, S. C., Moon, D. H., Wazne, M., Christodoulatos, C., & Kim, M. G. (2009). Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. Journal of Hazardous Materials, 168(1), 121-128. DOI:
  38. Joutey, N. T., Bahafid, W., Sayel, H., Abed, S. E., & Ghachtouli, N. E. (2011). Remediation of hexavalent chromium by consortia of indigenous bacteria from tannery waste-contaminated biotopes in Fez, Morocco. International journal of environmental studies, 68(6), 901-912. DOI:
  39. Karmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016). Removal of As (III) and As (V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836-844 DOI:
  40. Kavita, B., Limbachia, J., & Keharia, H. (2011). Hexavalent chromium sorption by biomass of chromium tolerant Pythium sp. Journal of Basic Microbiology, 51(2), 173-182. DOI:
  41. Kawanishi, S., Inoue, S., & Sano, S. (1986). Mechanism of DNA cleavage induced by sodium chromate (VI) in the presence of hydrogen peroxide. Journal of Biological Chemistry, 261(13), 5952-5958.. DOI:
  42. Khanafari, A., ESHGH, D. S., & Mashinchian, A. (2008). Removal of lead and chromium from aqueous solution by Bacillus circulans biofilm. Iranian Journal Of Environmental Health Science And Engineering ,5(3),195-200.
  43. Kilár, F. (2009). Cadmium biosorption on native Saccharomyces cerevisiae cells in aqueous suspension. Agriculture and environment, 1, 20-30.
  44. Kilic, E., Font, J., Puig, R., Çolak, S., & Çelik, D. (2011). Chromium recovery from tannery sludge with saponin and oxidative remediation. Journal of Hazardous Materials, 185(1), 456-462. DOI:
  45. Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on bioremediation of polluted environment: a management tool. International Journal Of Environmental Sciences, 1(6), 1079-1093.
  46. Kumar, C., Igbaria, A., d'Autréaux, B., Planson, A. G., Junot, C., Godat, E., ... & Toledano, M. B. (2011). Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol?redox control. The EMBO journal, 30(10), 2044-2056. DOI:
  47. Kumar, V., & Dwivedi, S. K. (2021). Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environmental Science and Pollution Research, 28(9), 10375-10412. DOI:
  48. Kumari, B., Tiwary, R. K., & Srivastava, K. K. (2017). Physico-chemical analysis and correlation study of water resources of the Sukinda chromite mining area, Odisha, India. Mine Water and the Environment, 36(3), 356-362. DOI:
  49. Langård, S. (2019). The carcinogenicity of chromium compounds in man and animals, Chromium: Metabolism and Toxicity, 13-30. DOI:
  50. Langård, S., & Norseth, T. (1975). A cohort study of bronchial carcinomas in workers producing chromate pigments. Occupational and Environmental Medicine, 32(1), 62-65. Li, Y., Liang, J., He, X., Zhang, L., & Liu, Y. (2016). Kinetics and mechanisms of amorphous FeS2 induced Cr (VI) reduction. Journal of Hazardous Materials, 320, 216-225. DOI:
  51. Li, X. B., Xu, W. B., Zhou, Q. S., Peng, Z. H., & Liu, G. H. (2011). Leaching kinetics of acid-soluble Cr (VI) from chromite ore processing residue with hydrofluoric acid. Journal of Central South University, 18(2), 399-405. DOI:
  52. Li, Y., Liang, J., He, X., Zhang, L., & Liu, Y. (2016). Kinetics and mechanisms of amorphous FeS2 induced Cr (VI) reduction. Journal of hazardous materials, 320, 216-225. DOI:
  53. Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental pollution, 147(2), 422-428. DOI:
  54. Losi, M. E., Amrhein, C., & Frankenberger, W. T. (1994). Environmental biochemistry of chromium. Reviews of Environmental Contamination and Toxicology, 91-121. DOI:
  55. Madhavi, V., Reddy, A. V. B., Reddy, K. G., Madhavi, G., & Prasad, T. N. K. V. (2013). An overview on research trends in remediation of chromium. Research Journal of Recent Sciences, 2277, 2502.
  56. Mala, J. G. S. M., Takeuchi, S., Sujatha, D., & Mani, U. (2020). Microbial chromate reductases: novel and potent mediators in chromium bioremediation-a review. Applied Microbiology: Theory & Technology, 32-44. DOI:
  57. Masinire, F., Adenuga, D. O., Tichapondwa, S. M., & Chirwa, E. M. (2021). Phytoremediation of Cr (VI) in wastewater using the vetiver grass (Chrysopogon zizanioides). Minerals Engineering, 172, 107141. DOI:
  58. Mayotte, T. (2018). Hexavalent Chromium Toxicity on Human Epithelial Cells and Protection by Ascorbic Acid and Epigallocatechin Gallate.
  59. Mirlahiji, S. G., & Eisazadeh, K. (2014). Bioremediation of Uranium by Geobacter spp. Journal of Research and Development, 1, 52-58.
  60. Mishra, A., & Malik, A. (2013). Recent advances in microbial metal bioaccumulation. Critical Reviews In Environmental Science And Technology, 43(11), 1162-1222. DOI:
  61. Mishra, H., & Sahu, H. B. (2013). Environmental scenario of chromite mining at Sukinda Valley—a review. International Journal of Environmental Engineering. Manag, 4, 287-292.
  62. Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In Environmental Biotechnology: For Sustainable Future (pp. 103-125). DOI:
  63. Mishra, V., Samantaray, D. P., Dash, S. K., Mishra, B. B., & Swain, R. K. (2010). Study on hexavalent chromium reduction by chromium resistant bacterial isolates of Sukinda mining area. Our Nature, 8(1), 63-71. DOI:
  64. Mohanty, M., & Patra, H. K. (2011). Attenuation of chromium toxicity by bioremediation technology. Reviews of Environmental Contamination and Toxicology Volume 210, 1-34. DOI:
  65. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environmental monitoring and assessment, 187(1), 1-17. DOI:
  66. Naik, U. C., Srivastava, S., & Thakur, I. S. (2012). Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environmental Science and Pollution Research, 19(7), 3005-3014. DOI:
  67. Narayani, M., & Shetty, K. V. (2013). Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Critical Reviews in Environmental Science and Technology, 43(9), 955-1009. DOI:
  68. Ohtake, H., Cervantes, C., & Silver, S. (1987). Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. Journal of Bacteriology, 169(8), 3853-3856. DOI:
  69. Oliveira, H. (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. Journal of Botany. DOI:
  70. Paiva, L. B., Correa, S. F., Santa Catarina, C., Floh, E. I. S., Silva, M. G. D., & Vitoria, A. P. (2014). Ecophysiological and biochemical parameters for assessing Cr+ 6 stress conditions in Pterogyne nitens Tul.: New and usual methods for the management and restoration of degraded areas. Environmental Engineering and Management Journal, 13, 3073-3081. DOI:
  71. Paranthaman, S. R., & Karthikeyan, B. (2015). Bioremediation of heavy metal in paper mill effluent using Pseudomonas spp. International Journal of Microbiology, 1, 1-5.
  72. Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of hazardous materials, 185(2-3), 549-574. DOI:
  73. Pattanaik, S., Pattanaik, D. K., Das, M., & Panda, R. B. (2012). Environmental scenario of chromite ore mining at Sukinda valley beyond 2030. Discovery Science, 1(2), 35-39.
  74. Pattnaik, B. K., & Equeenuddin, S. M. (2016). Potentially toxic metal contamination and enzyme activities in soil around chromite mines at Sukinda Ultramafic Complex, India. Journal of Geochemical Exploration, 168, 127-136. DOI:
  75. Pattnaik, S., Mohapatra, S., Pati, S., Dash, D., Devadarshini, D., Tanaya, K., ... & Samantaray, D. (2022). Microbial bioremediation of Cr (VI)-contaminated soil for sustainable agriculture. In Microbial Biodegradation and Bioremediation, 395-407. DOI:
  76. Petrilli, F. L., & De Flora, S. (1978). Metabolic deactivation of hexavalent chromium mutagenicity. Mutation Research/Environmental Mutagenesis and Related Subjects, 54(2), 139-147. DOI:
  77. Pradhan, S. K., Singh, N. R., Das, S., & Thatoi, H. (2020). Molecular identification and phylogenetic analysis of chromium-resistant bacteria isolated from chromite mine area soil, Sukinda, India using 16S rRNA sequencing. Soil and Sediment Contamination: An International Journal, 29(8), 805-822. DOI:
  78. Rai, V., Tandon, P. K., & Khatoon, S. (2014). Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine. BioMed research international. DOI:
  79. Rajesh, P., Athiappan, M., Paul, R., & Raj, K. D. (2014). Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. International Journal of Current Microbiology and Applied Sciences, 3(12), 326-335.
  80. Rathi, B. S., & Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995. DOI:
  81. Rosko, J. J., & Rachlin, J. W. (1977). The effect of cadium, copper, mercury, zinc and lead on cell division, growth, and chlorophyll a content of the chlorophyte Chlorella vulgaris. Bulletin of the Torrey Botanical Club, 226-233. DOI:
  82. Sarkar, S., Satheshkumar, A., & Premkumar, R. (2013). Hexavalent chromium (Cr (VI)) removal by live mycelium of a Trichoderma harzianum strain. Molecular Soil Biology, 4(1). DOI:
  83. Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., ... & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere, 178, 513-533. DOI:
  84. Sharma, J., Goutam, J., Dhuriya, Y. K., & Sharma, D. (2021). Bioremediation of Industrial pollutants. Microbial Rejuvenation of Polluted Environment, 1-31. DOI:
  85. Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229-254.. DOI:
  86. Sinha, S. N., & Biswas, K. (2014). Bioremediation of lead from river water through lead-resistant purple-nonsulfur bacteria. Global Journal of Microbiology and Biotechnology, 2(1), 11-18.
  87. Sinha, S. N., Biswas, M., Paul, D., & Rahaman, S. (2011). Biodegradation potential of bacterial isolates from tannery effluent with special reference to hexavalent chromium. Biotechnology Bioinformatics and Bioengineering, 1(3), 381-386.
  88. Su, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24.
  89. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology, 133-164. DOI:
  90. Tigini, V., Prigione, V., Giansanti, P., Mangiavillano, A., Pannocchia, A., & Varese, G. C. (2010). Fungal biosorption, an innovative treatment for the decolourisation and detoxification of textile effluents. Water, 2(3), 550-565. DOI:
  91. Tyagi, I., Gupta, V. K., Sadegh, H., Ghoshekandi, R. S., & Makhlouf, A. H. (2017). Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Science Technology and Development, 34(3), 195-214. DOI:
  92. Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369. DOI:
  93. Viti, C., Marchi, E., Decorosi, F., & Giovannetti, L. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS microbiology reviews, 38(4), 633-659. DOI:
  94. Wu, Y. H., Zhou, P., Cheng, H., Wang, C. S., Wu, M., & Xu, X. W. (2015). Draft genome sequence of Microbacterium profundi Shh49T, an Actinobacterium isolated from deep-sea sediment of a polymetallic nodule environment. Genome Announcements, 3(3), e00642-15. DOI:
  95. Zhou, X., Zhu, H., Liu, L., Lin, J., & Tang, K. (2010). A review: recent advances and future prospects of taxol-producing endophytic fungi. Applied microbiology and biotechnology, 86(6), 1707-1717. DOI: