Main Article Content

Abstract

Brown spot disease in rice is caused by Cochliobolus miyabeanus (Anamorph: Bipolaris oryzae (Breda de Haan) Shoemaker, 1959 (Synonyms: Helminthosporium oryzae). It causes significant losses by affecting both economic yield and grain quality. Though, it is a minor disease in most of the parts of the world but the historical famines like Krishna Godaveri Delta famine and Bengal famines and huge crop losses in a number of incidences as in Guyana and Nigeria renders it as a potential threat to rice crop and adverted the requirement of efficient, sustainable and economical strategies to cope with the pathogen. In this context, availability of resistant sources against the pathogen is a noteworthy alternative for disease management. Realising the importance of resistant sources, the present research investigation was undertaken to study association between resistance to brown spot disease and yield attributing traits in rice via correlation studies and path analysis to identify high yielding resistant lines for brown spot disease in rice. In this study disease resistance expressed in terms of AUDPC showed negative correlation with yield and yield attributing traits and direct negative effect on yield. Thus, AUDPC can be utilised as a selection parameter for developing improved cultivars with higher grain yield and lower susceptibility towards the brown spot pathogen.

Keywords

AUDPC Brown spot Cochliobolus miyabeanus Correlation studies Path analysis Resistance Rice

Article Details

How to Cite
Jha, B., Jaiswal, P., Kumar, R., Singh , M. K., K., N., Kumar, A., & Kumar, A. (2022). Studies of genetic correlation and path coefficient analysis between resistance to brown spot disease and yield related traits in rice (Oryza sativa L.). Environment Conservation Journal, 23(3), 361–366. https://doi.org/10.36953/ECJ.10252240

References

  1. Bhadru, D., Reddy, D. L., & Ramesha, M. S. (2011). Correlation and path coefficient analysis of yield and yield contributing traits in rice hybrids and their parental lines. Electronic Journal of Plant Breeding, 2(1), 112-116.
  2. Chandra, B. S., Reddy, T. D., Ansari, N. A., & Kumar, S. S. (2009). Correlation and path analysis for yield and yield components in rice (Oryza sativa L.). Agricultural Science Digest, 29(1), 45-47.
  3. Dewey, D. R., & Lu, H. K. (1959). A correletion and path coefficient analysis of components of creasted wheat grass and seed production, Agronomy Journal, 51(9), 515-518. DOI: https://doi.org/10.2134/agronj1959.00021962005100090002x
  4. Eidi, K. M., Kiani, G.,& Nematzadeh, G. (2013). Relationship between Morphological Traits in Rice Restorer Lines at F3
  5. Generation using Multivariate Analysis. Int J Adv Biol Biom Res., 1(6),572-577.
  6. Ghose, R.L.M., Ghatge, M.B.,& Subramanian, V. (1960). Rice in India (revised edn.), New Delhi, ICAR, 474 pp.
  7. Ito, S., & Kuribayashi, K. (1927). Production of the ascigerous stage in culture of Helminthosporium oryzae. Japanese Journal of Phytopathology, 2(1), 1-8. DOI: https://doi.org/10.3186/jjphytopath.2.1
  8. Jaiswal, P., Banshidhar,& Singh, R. (2019). Correlation and Path Coefficient Analysis for Yield Contributing Traits and Grain Zinc Concentration in Biofortified Inbred Lines of Maize (Zea mays L.). Int.J.Curr.Microbiol.App.Sci., 8(7), 1358-1364. DOI: https://doi.org/10.20546/ijcmas.2019.807.162
  9. Johnson, H. W., Robinson, H. P., & Comstock, R. E. (1955). Estimation of genetic and environmental variability in soybean, Agronomy Journal, 47(7), 314-318. DOI: https://doi.org/10.2134/agronj1955.00021962004700070009x
  10. Khatab, I.A., Farid M.A., & Kumamaru, T. (2016). Genetic diversity associated with heading date in some rice (Oryza sativa L.) genotypes using microsatellite markers. Journal of Environmental & Agricultural Sciences, 6, 58-63.
  11. Kiani, G., & Nematzadeh, G.(2012). Correlation and Path Coefficient Studies in F2 Populations of Rice. Nat Sci Biol., 4(2),124-127. DOI: https://doi.org/10.15835/nsb427366
  12. Kumar, S., Chauhan, M. P., Tomar, A., Kasana, R. K., & Kumar, N. (2018). Correlation and path coefficient analysis in rice (Oryza sativa L.). The Pharma Innovation Journal, 7(6), 20-26.
  13. Li, J. Y., Wang, J., & Zeigler, R. S. (2014). The 3,000 rice genomes project: new opportunities and challenges for future rice research. Gigascience, 3(1), 2047-217 DOI: https://doi.org/10.1186/2047-217X-3-8
  14. Ou, S.H. (1985). Rice Diseases 2nd edn. CMI, Kew, England,370 pp.
  15. Prakash, H. P., Verma, O. P., Chaudhary, A. K., & Amir, M. (2018). Correlation and Path Coefficient Analysis in Rice (Oryza sativa L.) for Sodicity Tolerance. Int. J. Curr. Microbiol. App. Sci, 7(7), 177-187. DOI: https://doi.org/10.20546/ijcmas.2018.707.022
  16. Ratna, M., Begum, S., Husna, A., Dey, S. R., & Hossain, M. S. (2015). Correlation and path coefficients analyses in basmati rice. Bangladesh Journal of Agricultural Research, 40(1),153-161. DOI: https://doi.org/10.3329/bjar.v40i1.23768
  17. Singh, R., Yadav, V., Mishra, DN. , & Yadav, A. (2018). Correlation and Path Analysis Studies in Rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 1, 2084-2090.
  18. Sunder, S., Singh, R., Dodan, D. S., & Mehla, D. S. (2005). Effect of different nitrogen levels on brown spot (Drechslera oryzae) of rice and its management through host resistance and fungicides. Plant disease research, Ludhiana, 20(2), 111.