

Journal homepage: https://www.environcj.in/

**Environment Conservation Journal** 

ISSN 0972-3099 (Print) 2278-5124 (Online)



# Assessing the genetic diversity for yield traits in rice (Oryza sativa L.) genotypes using multivariate analysis under controlled and water stress conditions

## Hamsa Poorna Prakash 🖂

Department of Genetics and Plant Breeding, College of Agriculture, IGKV, Raipur, Chhattisgarh, India.

#### Suman Rawte

Department of Genetics and Plant Breeding, College of Agriculture, IGKV, Raipur, Chhattisgarh, India.

## Ritu Ravi Saxena

Department of Genetics and Plant Breeding, College of Agriculture, IGKV, Raipur, Chhattisgarh, India.

#### Satish Balakrishna Verulkar

Department of Plant Molecular Biology and Biotechnology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India.

### Ravi Ratna Saxena

Department of Agricultural Statistics, College of Agriculture, IGKV, Raipur, Chhattisgarh, India.

| ARTICLE INFO                  | ABSTRACT                                                                                                                                                                                                                                                            |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Received : 11 November 2021   | The genetic diversity of yield and yield attributing characteristics was explored                                                                                                                                                                                   |
| Revised : 07 March 2022       | in this research. In the topical study, fifty-two rice genotypes including four                                                                                                                                                                                     |
| Accepted : 20 March 2022      | checks were used under three environmental conditions i.e. irrigated (IR), rainfed (RF) and terminal stage drought (TSD) conditions. The prevalence of                                                                                                              |
| Available online: 29 May 2022 | genetic divergence was evaluated using clustering and Principal component<br>analysis (PCA) was used to determine the relative contribution of various<br>traits. To fulfill the aim of the study, fifty-two genotypes were grouped into                            |
| Key Words:                    | three distinct and non-overlapping clusters among these 3 clusters, cluster-I                                                                                                                                                                                       |
| Cluster analysis              | was the largest with the highest number of genotypes i.e. 47, 49 and 49 under                                                                                                                                                                                       |
| PCA                           | IR, RF and TSD conditions, respectively. The highest average intra-cluster                                                                                                                                                                                          |
| Yield                         | distance was observed in cluster-I, also the genotypes showed high variability                                                                                                                                                                                      |
|                               | under all three conditions. The highest inter-cluster distance between the                                                                                                                                                                                          |
|                               | cluster-II and cluster-III (IR and TSD) and cluster-I and cluster-II (RF) was                                                                                                                                                                                       |
|                               | observed, indicated that genotypes from the group should be considered for                                                                                                                                                                                          |
|                               | direct use as parents in hybridization programme to produce high yield. Only                                                                                                                                                                                        |
|                               | five of the 13 principal components (PCs) have been considered in the study                                                                                                                                                                                         |
|                               | based on the Eigen values and variability criteria. From the complex matrix it<br>was revealed that the first-PC accounted for the highest variability. Genotypes<br>which fall under a common PC were observed to be the most important factor<br>for grain yield. |

## Introduction

feeds more than half of the world's population (Ricepedia, 2020; USDA, 2020). Rice genotypes from Chhattisgarh are critical for preserving and maintaining rice biodiversity. Rice germplasm is a valuable resource that must be protected. In order produce superior hybrid to and desirable transgressive segregants, genetic diversity plays a critical role in selecting suitable parents for the hybridization programme (Burman et al., 2019). Cluster analysis is a numerical approach used for (potentially) correlated variables into a set of

Rice (Oryza sativa L.) is a major staple crop that measuring genetic divergence in the germplasm lines. Although yield is a complex trait that is influenced by a variety of factors and the environment, principal component analysis was used to discover and minimize the number of traits for effective selection (Gaur et al., 2019). Because it is a simple, non-parametric method for extracting crucial data from confusing data sets, PCA has become a standard tool in modern data analysis. It is a mathematical process that converts a set of

Corresponding author E-mail: hamsapoornaprakash143@gmail.com Doi: https://doi.org/10.36953/ECJ.9692201 This work is licensed under Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) © ASEA

(smaller) uncorrelated variables known as principal components. It decreases the data's dimensionality while preserving the majority of data set variation. The first principal component accounts for as much variability as possible. Multivariate analysis (PCA) has been widely used in the selection of diverse parents in any hybridization programme. The main advantage of PCA is that it quantifies the value of each dimension in characterizing the variability of a data set (Raj *et al.*, 2020). The current study was conducted to assess genetic divergence and PCA in 52 rice germplasm lines to discover yield related characteristics whose selection would result in an increase in rice grain yield.

# **Material and Methods**

The current research was conducted at the Research Farm, Department of Genetics and Plant Breeding, Indira Gandhi Agricultural University, Raipur (Chhattisgarh) during kharif 2018 and kharif 2019 using Randomized Block Design (RBD) with two replications. The experimental material consists of 52 germplasm lines which were grown in two rows with row to row and plant to plant spacing of  $20 \times$ 20 cm maintained under three environmental conditions (IR, RF and TSD). In IR and TSD conditions, seeds were sown in nurseries and seedlings were transplanted as a single plant after twenty-one days and under RF condition, seeds were sown directly in both the seasons. The collected data were pooled over the season and the data recorded for thirteen yield traits were days to 50% flowering, plant height in cm, flag leaf length in cm, flag leaf width in cm, number of tillers per m<sup>2</sup>, panicle length in cm, biological yield per plot in g, grain yield per plot in g, harvest index in per cent, thousand grain weight in g, number of filled grains per panicle, number of unfilled grains per panicle and total number of grains per panicle. Cluster analyses for the above characters were done by following Agglomerative hierarchical clustering (AHC) using XLSTAT. The Hierarchical clustering method's structure is represented by a dendrogram. For the traits, intra and inter cluster distances, as well as mean cluster performance were calculated (Sudeepthi et al., 2020). Similarly, Multivariate Analysis (PCA) was performed by following Pearson correlation type (Kumari et al., 2019) using

XLSTAT. For the traits, Eigen values, factor loading and principal component scores were calculated.

# **Results and Discussion** Cluster analysis

Cluster analysis divides the fifty-two rice genotypes into 3 clusters under three conditions (Table 1) and dendrogram showed in Figure 1. Cluster-I with 47 genotypes was the biggest cluster followed by cluster-II with 2 genotypes, while cluster-III was mono-genotypic under irrigated condition. Cluster-I with 49 genotypes had the most genotypes under rainfed and TSD conditions, followed by cluster-II, which had 2 genotypes and cluster-III was monogenotypic. As per the topical study the intra and inter cluster under irrigated, rainfed and TSD conditions are shown in Table 2. The highest intracluster distance under all three conditions were found in cluster-I (IR-14.41), (RF-8.23), (TSD-8.18), and crossing between the genotypes of cluster-I produces better segregants with greater genetic diversity and genetic advance. The highest inter-cluster distance between the clusters-II and cluster-III under irrigated (30.56) and TSD (12.46) conditions and between the cluster-I and cluster-II under rainfed (13.38) condition, followed by cluster-I and cluster-II (26.96), cluster-I and cluster-III (15.87) under irrigated condition; cluster-II and cluster-III (10.87), cluster-I and cluster-III (9.91) under rainfed condition; cluster-I and cluster-III (10.53), cluster-I and cluster-II (8.21) under TSD condition, revealed greater diversity among these clusters and may be used in hybridization for the development of germplasm lines. Based on mean performance of three clusters (Table 3), the traits which showed high mean values were biological yield per plot, grain yield per plot, number of tillers per m<sup>2</sup> and total number of grains per panicle in all conditions. The highest percent contribution (Table 4) were showed by the traits, harvest index under irrigated (16.104) and rainfed (13.598) conditions and thousand grain weight under TSD (11.800) condition. Kali Mai was the only genotype commonly observed in all three clusters. The genotypes falling in the same cluster (intra-cluster) are more closely related and less divergent than those which are placed in different clusters (inter-cluster).

| Cluster      | No. of    | f Name of genotypes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. of         | Name of genotypes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No. of         | Name of genotypes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.          | genotypes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | genotypes      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | genotypes      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Irrigated (P | ooled)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rainfed (Poole | d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Terminal Stage | Drought (Pooled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I            | 47        | Bega hudi, Aajan, Banko, Barangi, Khurabal,<br>Peelee Luchai, Nagbel, Bangoli-5, Byalo,<br>Duggi, Saja chhilau, Surmatia, Basa bhog,<br>Dhusari, Gandhak, Cross 116, IR 62266,<br>Laloo-14, Aganni, Safri 17, Tarunbhog, Chepti<br>Gurmatia (3011), Basmati 370, Kalanamak,<br>Moroberekan, Pakshi Raj, Dokra Dokri,<br>Parmal, Tedesi, Bisni, Dhaniya Phool, Tulsi<br>Manjar, Sarai Phool, Bharma Tripal, Dudh<br>Malai, Shonth, Chhind Guchchhi, Naykain<br>Jhaba, Ramali Chonch, Roti, Hathi Panjara,<br>Nangodar, Soth, Bajarang Bali, Kurso bhog,<br>Swarna, Maheshwari | 49             | Bega hudi, Aajan, Banko, Barangi,<br>Khurabal, Peelee Luchai, Nagbel,<br>Bangoli-5, Byalo, Duggi, Saja chhilau,<br>Surmatia, Basa bhog, Dhusari, Gandhak,<br>Cross 116, IR 62266, Laloo-14, Aganni,<br>Safri 17, Tarunbhog, Chepti Gurmatia<br>(3011), Kalanamak, Moroberekan,<br>Nagina-22, Pakshi Raj, Dokra Dokri,<br>Parmal, Tedesi, Bisni, Dhaniya Phool,<br>Tulsi Manjar, Sarai Phool, Kharani,<br>Bharma Tripal, Dudh Malai, Shonth,<br>Chhind Guchchhi, Naykain Jhaba, Ramali<br>Chonch, Roti, Hathi Panjara, Nagodar,<br>Shoth, Bajarang Bali, Kurso bhog,<br>Maheshwari, Mahamaya, MTU 1010 | 49             | Bega hudi, Aajan, Banko, Barangi, Khurabal,<br>Peelee Luchai, Nagbel, Bangoli-5, Byalo,<br>Duggi, Saja chhilau,Surmatia, Basa bhog,<br>Dhusari, Gandhak, Cross 116, IR 62266, Laloo-<br>14, Aganni, Safri 17, Tarunbhog, Chepti<br>Gurmatia (3011), Basmati 370, Kalanamak,<br>Moroberekan, Nagina-22, Pakshi Raj, Dokra<br>Dokri, Parmal, Tedesi, Tulsi Manjar, Sarai<br>Phool, Kharani, Bharma Tripal, Dudh Malai,<br>Shonth, Chhind Guchchhi, Naykain Jhaba,<br>Ramali Chonch, Roti, Hathi Panjara, Nangodar,<br>Soth, Bajarang Bali, Kurso bhog, Swarna,<br>Maheshwari, Mahamaya, MTU 1010 |
| П            | 4         | Nagina-22, Kharani, Mahamaya, MTU 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2              | Basmati 370, Swarna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2              | Bisni, Dhaniya Phool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| III          | 1         | Kali Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              | Kali Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1              | Kali Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 1: Pooled clustering pattern of fifty two rice genotypes in different water regimes during *Kharif* 2018 and 2019.

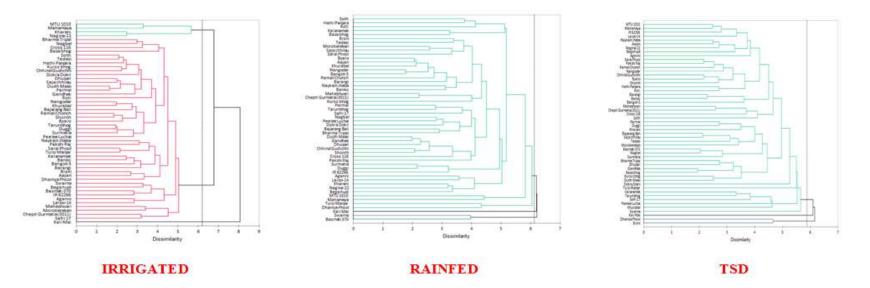



Figure 1: Dendrogram of fifty-two rice genotypes in different conditions. Table 2: Average intra (diagonal and bold) and inter cluster distance for irrigated, rainfed and terminal stage drought

204 Environment Conservation Journal

| Cluster<br>I<br>II<br>III |       | Irrigated |       |      | Rainfed |       | TSD  |      |       |  |  |
|---------------------------|-------|-----------|-------|------|---------|-------|------|------|-------|--|--|
| Cluster                   | Ι     | II        | III   | I    | II      | III   | Ι    | II   | III   |  |  |
| Ι                         | 14.41 | 26.96     | 15.87 | 8.23 | 13.38   | 9.91  | 8.18 | 8.21 | 10.53 |  |  |
| П                         |       | 13.25     | 30.56 |      | 5.35    | 10.87 |      | 7.62 | 12.46 |  |  |
| III                       |       |           | 0.00  |      |         | 0.00  |      |      | 0.00  |  |  |

## Table 3: Cluster mean value for different traits under different conditions.

|           | Class | DTF     | PH      | FLL    | FLW   | NT      | PL     | BY       | GY      | HI     | TGW    | NFG     | NUFG   | TNG     |
|-----------|-------|---------|---------|--------|-------|---------|--------|----------|---------|--------|--------|---------|--------|---------|
|           | Ι     | 108.388 | 133.421 | 32.352 | 1.528 | 185.213 | 25.808 | 1691.862 | 279.351 | 17.071 | 28.502 | 98.156  | 29.537 | 127.693 |
| Irrigated | Π     | 91.938  | 101.738 | 28.986 | 1.375 | 217.188 | 20.929 | 876.870  | 313.800 | 39.121 | 27.878 | 86.705  | 30.963 | 117.668 |
|           | III   | 118.000 | 128.450 | 36.885 | 1.450 | 217.500 | 27.668 | 1890.800 | 361.600 | 19.238 | 38.971 | 143.810 | 72.710 | 216.520 |
|           | Ι     | 97.776  | 103.423 | 30.222 | 1.340 | 122.742 | 24.435 | 373.192  | 69.648  | 19.221 | 22.434 | 82.444  | 36.851 | 119.275 |
| Rainfed   | Π     | 104.125 | 80.550  | 27.995 | 1.285 | 146.250 | 23.048 | 206.100  | 74.264  | 37.205 | 19.576 | 75.020  | 41.803 | 116.823 |
|           | III   | 109.000 | 91.150  | 29.800 | 1.175 | 103.750 | 25.550 | 322.900  | 75.300  | 23.347 | 37.250 | 110.380 | 45.050 | 155.430 |
|           | Ι     | 92.939  | 109.473 | 32.428 | 1.412 | 174.834 | 23.741 | 542.895  | 110.371 | 20.828 | 27.727 | 85.212  | 24.757 | 109.969 |
| TSD       | Π     | 80.625  | 130.100 | 29.768 | 1.178 | 181.875 | 26.148 | 434.325  | 124.215 | 30.013 | 19.926 | 79.962  | 32.645 | 112.606 |
|           | III   | 103.000 | 110.850 | 33.555 | 1.345 | 108.750 | 27.000 | 617.400  | 102.000 | 18.016 | 27.813 | 91.647  | 11.680 | 103.327 |

Note: DTF= days to 50% flowering, PH= plant height (cm), FLL= flag leaf length (cm), FLW= flag leaf width (cm), NT= number of tillers m<sup>2</sup>, PL= panicle length (cm), BY= biological yield/plot (g), GY= grain yields per plot (g), HI= harvest index (%), TGW=thousand grain weight (g), NFG= number of filled grains per panicle, NUFG= number of unfilled grains per panicle, TNF= total number of grains per panicle

#### Table 4: Percent contribution of each character under various conditions

| Traits |           | % contribution of each charac | cter   |
|--------|-----------|-------------------------------|--------|
|        | IRRIGATED | RAINFED                       | TSD    |
| DTF    | 3.771     | 3.530                         | 4.192  |
| PH     | 6.353     | 5.837                         | 6.292  |
| FLL    | 5.715     | 6.231                         | 7.054  |
| FLW    | 5.945     | 3.126                         | 6.519  |
| NT     | 5.118     | 8.958                         | 6.128  |
| PL     | 5.087     | 4.440                         | 3.554  |
| BY     | 8.364     | 8.789                         | 6.356  |
| GY     | 5.620     | 9.902                         | 9.803  |
| HI     | 16.104    | 13.598                        | 11.733 |
| TGW    | 6.730     | 9.298                         | 11.800 |
| NFG    | 9.749     | 10.531                        | 9.238  |
| NUFG   | 12.187    | 8.145                         | 10.107 |
| TNG    | 9.256     | 7.615                         | 7.225  |

Note: DTF= days to 50% flowering, PH= plant height (cm), FLL= flag leaf length (cm), FLW= flag leaf width (cm), NT= number of tillers m<sup>2</sup>, PL= panicle length (cm), BY= biological yield/plot (g), GY= grain yields per plot (g), HI= harvest index (%), TGW=thousand grain weight (g), NFG= number of filled grains per panicle, NUFG= number of unfilled grains per panicle, TNF= total number of grains per panicle

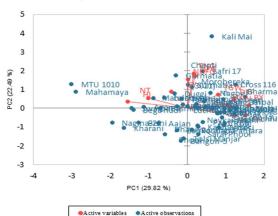
|     |                 | PC1    | PC2    | PC3    | PC4    | PC5    | PC6    | PC7    | PC8    | PC9    | PC10   | PC11   | PC12    |
|-----|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
|     | Eigenvalue      | 3.877  | 2.924  | 1.171  | 1.088  | 0.911  | 0.714  | 0.651  | 0.546  | 0.412  | 0.380  | 0.271  | 0.057   |
| IR  | Variability (%) | 29.820 | 22.489 | 9.008  | 8.366  | 7.007  | 5.489  | 5.009  | 4.197  | 3.171  | 2.920  | 2.087  | 0.438   |
|     | Cumulative %    | 29.820 | 52.309 | 61.317 | 69.683 | 76.690 | 82.178 | 87.187 | 91.384 | 94.555 | 97.475 | 99.562 | 100.000 |
|     | Eigenvalue      | 2.506  | 2.244  | 1.588  | 1.386  | 1.145  | 0.986  | 0.878  | 0.814  | 0.601  | 0.558  | 0.264  | 0.031   |
| RF  | Variability (%) | 19.281 | 17.258 | 12.214 | 10.662 | 8.806  | 7.583  | 6.751  | 6.261  | 4.622  | 4.295  | 2.031  | 0.235   |
|     | Cumulative %    | 19.281 | 36.539 | 48.753 | 59.415 | 68.221 | 75.804 | 82.555 | 88.816 | 93.439 | 97.734 | 99.765 | 100.000 |
|     | Eigenvalue      | 2.607  | 2.101  | 1.709  | 1.595  | 1.158  | 1.004  | 0.840  | 0.633  | 0.491  | 0.432  | 0.417  | 0.014   |
| TSD | Variability (%) | 20.056 | 16.165 | 13.144 | 12.268 | 8.905  | 7.720  | 6.459  | 4.866  | 3.780  | 3.323  | 3.204  | 0.109   |
|     | Cumulative %    | 20.056 | 36.221 | 49.365 | 61.633 | 70.539 | 78.259 | 84.717 | 89.583 | 93.364 | 96.687 | 99.891 | 100.000 |

Table 5: Eigen values of yield and yield related traits of 52 rice germplasm accessions under different conditions

Table 6: Factor loading (Eigen vectors) of 52 rice germplasm accessions for yield traits under different conditions

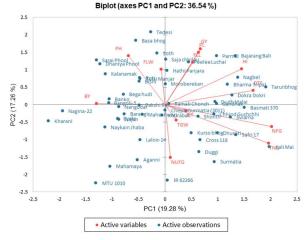
|      | PC1    | PC2    | PC3       | PC4    | PC5    | PC1    | PC2    | PC3     | PC4    | PC5    | PC1    | PC2    | PC3    | PC4    | PC5    |
|------|--------|--------|-----------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
|      |        |        | Irrigated |        |        |        |        | Rainfed |        |        |        |        | TSD    |        |        |
| DTF  | 0.634  | 0.233  | -0.078    | -0.002 | -0.468 | 0.653  | 0.158  | -0.150  | 0.243  | 0.282  | 0.501  | -0.189 | -0.469 | 0.336  | 0.177  |
| PH   | 0.788  | -0.186 | -0.077    | 0.071  | 0.102  | -0.271 | 0.549  | -0.361  | -0.128 | 0.404  | -0.125 | -0.002 | 0.638  | 0.314  | 0.323  |
| FLL  | 0.532  | 0.110  | 0.595     | 0.092  | -0.180 | 0.205  | 0.475  | -0.188  | 0.371  | -0.385 | 0.202  | -0.394 | 0.292  | 0.063  | 0.530  |
| FLW  | 0.575  | 0.056  | -0.153    | 0.368  | 0.482  | -0.027 | 0.396  | -0.219  | 0.642  | -0.127 | 0.028  | -0.500 | 0.271  | 0.593  | -0.090 |
| NT   | -0.526 | 0.278  | -0.351    | 0.078  | -0.452 | 0.157  | -0.068 | -0.089  | -0.442 | -0.033 | -0.087 | 0.227  | 0.523  | -0.429 | -0.301 |
| PL   | 0.636  | -0.198 | -0.112    | 0.401  | -0.367 | 0.249  | 0.587  | -0.280  | -0.119 | 0.590  | -0.225 | -0.117 | -0.127 | -0.183 | 0.678  |
| BY   | 0.825  | 0.090  | 0.183     | -0.286 | -0.039 | -0.508 | 0.011  | -0.629  | -0.316 | -0.174 | 0.396  | -0.644 | -0.075 | 0.012  | -0.209 |
| GY   | -0.212 | 0.449  | 0.681     | 0.345  | -0.005 | 0.264  | 0.627  | 0.188   | -0.449 | -0.178 | 0.664  | 0.491  | -0.092 | 0.445  | -0.061 |
| HI   | -0.800 | 0.176  | 0.106     | 0.477  | 0.022  | 0.570  | 0.401  | 0.671   | -0.168 | -0.042 | 0.346  | 0.818  | -0.023 | 0.374  | 0.107  |
| TGW  | 0.417  | 0.369  | -0.341    | 0.491  | 0.129  | 0.085  | -0.175 | 0.124   | 0.453  | 0.241  | -0.286 | -0.287 | 0.340  | 0.536  | -0.318 |
| NFG  | 0.108  | 0.881  | -0.035    | -0.254 | 0.173  | 0.791  | -0.246 | -0.450  | -0.086 | -0.206 | 0.853  | -0.209 | 0.182  | -0.308 | -0.042 |
| NUFG | 0.010  | 0.796  | -0.123    | 0.060  | -0.144 | 0.039  | -0.593 | 0.134   | -0.021 | 0.471  | -0.002 | 0.369  | 0.581  | 0.021  | 0.147  |
| TNG  | 0.090  | 0.957  | -0.067    | -0.185 | 0.094  | 0.768  | -0.433 | -0.385  | -0.090 | -0.044 | 0.844  | -0.090 | 0.363  | -0.298 | 0.005  |

Note: DTF= days to 50% flowering, PH= plant height (cm), FLL= flag leaf length (cm), FLW= flag leaf width (cm), NT= number of tillers m<sup>2</sup>, PL= panicle length (cm), BY= biological yield/plot (g), GY= grain yields per plot (g), HI= harvest index (%), TGW=thousand grain weight (g), NFG= number of filled grains per panicle, NUFG= number of unfilled grains per panicle, TNF= total number of grains per panicle

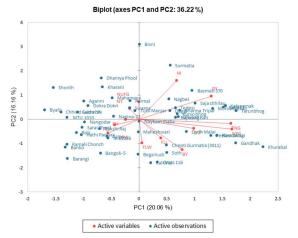

Table 7: Principal component score of rice genotypes under irrigated, rainfed and TSD conditions

| Accessions    |         |        |        |        |        |         |        | Score  |        |        |        |        |        |        |        |
|---------------|---------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | PC1     | PC2    | PC3    | PC4    | PC5    | PC1     | PC2    | PC3    | PC4    | PC5    | PC1    | PC2    | PC3    | PC4    | PC5    |
|               | IRRGATE | D      |        |        |        | RAINFEI | )      |        |        |        | TSD    |        |        |        |        |
| Bega hudi     | -2.766  | -0.138 | 0.021  | -1.135 | -1.501 | -1.242  | 0.448  | 1.119  | 0.398  | -1.603 | -0.031 | -2.095 | -0.309 | -1.262 | -1.695 |
| Aajan         | -1.475  | -1.374 | 1.305  | -1.770 | 0.734  | -1.383  | -0.625 | 0.431  | -0.125 | 0.303  | -0.930 | -1.021 | -0.140 | -0.588 | 0.108  |
| Banko         | -0.526  | -2.000 | 0.272  | 1.221  | -1.274 | -1.674  | 0.241  | -0.256 | 0.922  | 0.562  | -2.134 | -1.669 | 1.318  | -1.122 | 1.117  |
| Barangi       | 0.233   | -1.948 | 1.292  | 2.254  | 0.233  | -1.216  | -0.396 | -1.055 | 1.240  | 1.613  | -2.073 | -2.352 | 1.690  | -2.071 | 2.484  |
| Khurabal      | 0.478   | 0.376  | -0.364 | -1.077 | 0.556  | -0.086  | -0.447 | 0.116  | 0.820  | 0.370  | 3.598  | -1.654 | 2.183  | -0.345 | -0.778 |
| Peelee Luchai | -0.217  | 0.333  | 0.774  | -0.672 | -0.354 | 0.706   | 1.837  | -1.062 | -0.159 | -1.139 | 2.085  | -0.963 | 1.165  | -0.639 | 0.405  |
| Nagbel        | 1.190   | 1.397  | 1.176  | -0.190 | 0.535  | 2.179   | 1.174  | -0.217 | 0.484  | -1.742 | 0.865  | 1.207  | -0.398 | 0.107  | 0.408  |
| Bangoli-5     | -0.314  | -2.955 | 0.771  | 0.713  | 0.490  | -1.687  | 0.077  | -0.707 | -0.103 | 0.068  | -1.118 | -2.025 | 0.459  | 0.220  | 0.530  |

<sup>206</sup> Environment Conservation Journal


Assessing the genetic diversity for yield traits in rice

| Byalo              | 0.004  | 0.162  | -0.226 | -0.633 | 0.614  | -1.417 | -0.590 | -0.440 | 0.348  | 0.165  | -2.737 | 0.560  | 0.155  | 0.462  | 0.812  |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Duggi              | -0.638 | 1.343  | 0.524  | -0.929 | -0.414 | 1.017  | -2.027 | -0.411 | 0.210  | -0.290 | 0.896  | 0.515  | -0.916 | 1.348  | -1.576 |
| Saja chhilau       | 1.792  | -0.848 | 0.757  | 0.814  | -0.392 | 0.021  | 1.949  | -1.553 | -0.360 | -0.610 | 1.625  | 0.961  | 1.419  | 1.173  | -0.048 |
| Surmatia           | 0.033  | 2.131  | 0.509  | -0.888 | 0.144  | 1.484  | -2.445 | 0.985  | 0.640  | -0.951 | 0.906  | 3.225  | 0.104  | 0.265  | -0.053 |
| Basa bhog          | 1.917  | -0.346 | 2.824  | 0.031  | -1.235 | -0.870 | 2.753  | 0.329  | -0.220 | -1.547 | 2.257  | -0.967 | -1.274 | 0.411  | 1.023  |
| Dhusari            | 1.856  | 0.821  | 0.440  | 0.350  | -0.160 | 1.567  | -1.209 | -1.819 | -0.635 | -0.679 | 1.138  | 0.148  | -2.765 | 0.643  | 1.328  |
| Gandhak            | 1.557  | -0.460 | 1.756  | 0.244  | -0.301 | 1.546  | 0.049  | -1.179 | 0.485  | -0.405 | 2.802  | -1.419 | -1.692 | 0.417  | 0.086  |
| Cross 116          | 2.456  | 2.158  | 1.898  | 0.101  | 1.495  | 1.046  | -1.512 | -2.679 | 0.095  | 0.133  | 0.536  | -2.565 | 1.636  | -0.611 | 0.543  |
| IR 62266           | -0.525 | 0.182  | 0.981  | 0.087  | -0.874 | 0.070  | -3.237 | 1.264  | 0.549  | -0.231 | -0.904 | -1.120 | -1.597 | -1.257 | -0.710 |
| Laloo-14           | -1.187 | 0.956  | -0.770 | -1.215 | 1.579  | -0.744 | -1.500 | 1.141  | 1.056  | 0.126  | -1.787 | 0.437  | -1.864 | -1.114 | -0.922 |
| Aganni             | -2.217 | 0.124  | -0.032 | -1.255 | 0.128  | -0.824 | -2.363 | -0.184 | -1.384 | -1.158 | -1.598 | 1.092  | 1.299  | -2.369 | -0.728 |
| Safri 17           | 0.799  | 3.387  | -0.344 | -0.502 | -0.917 | 2.128  | -1.286 | -0.198 | -1.682 | 0.639  | 2.448  | 0.718  | 0.118  | -1.035 | -0.366 |
| Tarunbhog          | -0.305 | 0.845  | 1.202  | -1.836 | -0.506 | 3.029  | 0.764  | 0.292  | -1.674 | -0.012 | 2.819  | 0.503  | 1.322  | -1.748 | -0.184 |
| Chepti             | -0.584 | 2.981  | -1.161 | -0.649 | 1.274  | 0.006  | -0.234 | 0.606  | -1.154 | -0.369 | 0.795  | -1.554 | 0.258  | -0.366 | -1.690 |
| Gurmatia           |        | -      | -      |        |        |        | -      |        |        |        |        |        |        |        |        |
| (3011)             |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Basmati 370        | -1.371 | 0.005  | 0.114  | -1.240 | -1.373 | 2.374  | -0.125 | 3.519  | -1.280 | -0.237 | 1.536  | 1.714  | -1.627 | -0.580 | 0.370  |
| Kalanamak          | 0.564  | -1.692 | 1.081  | 0.579  | -0.680 | -1.787 | 1.325  | 0.647  | 0.579  | -1.318 | 2.513  | 0.808  | 1.020  | -1.925 | 1.403  |
| Moroberekan        | 0.241  | 1.956  | 0.450  | 1.422  | 2.053  | 0.009  | 0.896  | -0.816 | -0.560 | 0.385  | 2.136  | 0.650  | 0.796  | 2.497  | -1.025 |
| Nagina-22          | -3.853 | -1.331 | 0.353  | 1.598  | 1.585  | -3.063 | -0.268 | 1.314  | -0.012 | -2.660 | -0.737 | 0.172  | 1.120  | -0.975 | -1.036 |
| Pakshi Raj         | 0.794  | -1.255 | -0.691 | -0.232 | 0.522  | -0.767 | -0.015 | -2.264 | -1.049 | -1.922 | -1.141 | -0.561 | 0.914  | 0.283  | -0.189 |
| Dokra Dokri        | 2.480  | -0.029 | -1.553 | 1.322  | -0.506 | 2.013  | 0.405  | 0.517  | 0.845  | -0.802 | -1.478 | 0.814  | 0.814  | 1.999  | 1.828  |
| Parmal             | 1.279  | -0.034 | -0.752 | 0.378  | -0.842 | 1.543  | 2.090  | 0.049  | -1.707 | 0.119  | -0.260 | 1.098  | -0.105 | 1.559  | 0.145  |
| Tedesi             | 1.610  | -1.743 | -1.953 | 0.681  | 0.559  | -0.424 | 3.120  | 0.218  | -1.021 | 1.273  | 1.061  | 0.689  | 1.061  | 1.940  | -1.594 |
| Bisni              | -2.480 | -1.333 | 1.421  | -0.302 | -0.051 | -0.771 | 1.003  | -0.661 | -1.290 | 1.195  | 0.014  | 4.482  | 0.960  | -1.082 | 1.264  |
| Dhaniya Phool      | -1.132 | -2.382 | -0.242 | -0.591 | -0.404 | -1.945 | 1.755  | 0.517  | -2.997 | 2.558  | -1.088 | 2.474  | 1.780  | -0.337 | 2.400  |
| Tulsi Manjar       | -0.183 | -2.768 | -0.730 | -1.445 | -1.440 | -0.746 | 1.121  | 1.607  | -2.769 | 0.496  | -0.117 | 0.519  | -2.168 | -1.467 | 0.054  |
| Sarai Phool        | 0.573  | -2.362 | -0.576 | -1.177 | -0.775 | -2.048 | 1.914  | -1.636 | 0.354  | -0.254 | -1.655 | -0.487 | 0.376  | 0.268  | -0.523 |
| Kharani            | -3.243 | -1.785 | 0.771  | 0.608  | 0.703  | -3.489 | -0.697 | 1.134  | 0.137  | -0.403 | -1.058 | 1.925  | 0.812  | 0.556  | -1.512 |
| Bharma Tripal      | 2.976  | 1.046  | 1.080  | 0.565  | -0.720 | 1.875  | 0.867  | -0.396 | 1.193  | 0.408  | 1.183  | 0.530  | -1.401 | 1.620  | 1.600  |
| Dudh Malai         | 1.912  | -0.006 | 0.175  | 0.054  | -0.838 | 1.505  | 0.127  | -1.522 | 0.259  | 0.225  | 1.374  | -0.747 | -0.810 | -0.649 | 1.321  |
| Shonth             | 0.526  | 0.027  | 0.614  | -0.097 | 0.947  | 0.993  | -0.505 | -2.261 | 0.076  | 0.462  | -2.488 | 1.896  | -0.162 | 1.225  | -0.448 |
| Chhind<br>Guchchhi | 2.394  | -0.453 | -1.100 | -0.058 | 0.736  | 1.462  | -0.402 | -1.076 | 0.207  | 0.565  | -2.261 | 0.435  | 0.162  | 0.584  | 0.673  |
| Naykain Jhaba      | 0.547  | -1.558 | 0.011  | -1.043 | 1.457  | -1.797 | -0.968 | 0.460  | 2.083  | -0.073 | 0.007  | -0.129 | 0.808  | 0.026  | -0.816 |
| Ramali Chonch      | 0.931  | 0.101  | -0.172 | -0.723 | 1.091  | 0.120  | 0.047  | -0.795 | 1.008  | 0.268  | -2.088 | -1.491 | 1.503  | 0.608  | -0.339 |
| Roti               | 1.903  | -1.379 | -1.714 | 1.600  | -0.446 | -0.760 | 1.146  | 0.215  | 2.056  | 3.435  | -1.812 | -0.793 | -0.507 | 3.186  | -0.012 |
| Hathi Panjara      | 1.878  | -1.538 | -0.746 | 0.977  | -0.128 | 0.057  | 1.467  | 1.133  | 3.260  | 0.638  | -1.668 | -0.923 | -0.848 | 1.346  | 0.045  |
| Nangodar           | 0.388  | 0.167  | -0.622 | -1.184 | 1.380  | -1.380 | -0.088 | -0.222 | 1.042  | 0.048  | -1.580 | -0.157 | -0.709 | 0.954  | -1.235 |
| Soth               | 1.674  | -0.412 | -0.942 | 1.014  | 0.629  | -0.237 | 2.214  | 1.638  | 1.067  | 0.401  | 0.802  | -2.000 | 2.102  | 2.232  | -0.623 |
| Bajarang Bali      | 0.852  | 0.608  | -1.815 | -0.813 | -0.723 | 2.111  | 2.102  | 0.384  | 0.621  | -1.364 | 1.060  | 0.104  | 0.744  | 0.038  | -0.539 |
| Kurso bhog         | 2.189  | -0.178 | -1.958 | 0.289  | 0.202  | 0.792  | -1.201 | 0.158  | 0.643  | 0.913  | 1.108  | 0.314  | -0.697 | 0.524  | 1.066  |
| Kali Mai           | 1.268  | 6.564  | 0.004  | 1.157  | -1.616 | 3.131  | -1.802 | 0.394  | 0.595  | 1.550  | 0.334  | -2.601 | -3.262 | 0.703  | 1.836  |
| Swarna             | -2.848 | 0.001  | -2.308 | -0.381 | -1.867 | 1.968  | -0.534 | 3.872  | 0.116  | 0.092  | -0.272 | 0.674  | -2.756 | -1.561 | -1.365 |
| Maheshwari         | -1.749 | 0.941  | -1.199 | 0.281  | 1.346  | -0.674 | -0.414 | -0.429 | -0.067 | -0.439 | -0.019 | -0.752 | -0.228 | -0.883 | -0.470 |
| Mahamaya           | -5.725 | 1.486  | 0.069  | 3.118  | -0.655 | -1.650 | -2.639 | 0.901  | -1.955 | 1.071  | -0.781 | 1.280  | -0.739 | -1.629 | -1.366 |
| MTU 1010           | -5.956 | 2.207  | -0.678 | 0.576  | 0.002  | -2.071 | -3.361 | -1.122 | -1.182 | 0.127  | -2.083 | 0.100  | -1.124 | -1.579 | -1.007 |




Biplot (axes PC1 and PC2: 52.31 %)

IRRIGATED



RAINFED



#### TSD

Figure 2: Biplot graph representing the active variables and observations taking  $PC_1$  and  $PC_2$  under different conditions

The greater the distance between two clusters, greater is the divergence (Singh and Narayanan, 2013). If crossing takes place among genotypes between clusters, they produce more diverse and better progenies when compared to the crossing of genotypes within the same cluster. Those genotypes can be used as parents in future crossing programmes. The results were found in agreement with Amegan et al., 2020; according to Bekis et al., 2021 the highest inter-cluster distance was recorded between cluster II & III. The results depicted that cross-genotype from cluster II & III, cluster I & III to get genotypes of rice with high grain yield and early maturing genotypes; Burman et al., 2019; Iqbal et al., 2018 and Shrestha et al., 2021 revealed that cluster II & cluster IV showed the highest distance between cluster centroids. The genotypes in cluster II would be grown for higher grain yield. Genotypes in clusters of different conditions with high cluster mean value may be directly used for adaptation, or intercrossing may be recommended to produce the wide spectrum of variability, followed by effective selection for those traits

## Principal Component Analysis (PCA)

according to the results.

PCA was used in the topical study to analyze thirteen yield and yield-related parameters in 52 rice germplasm accessions (Table 5). Biplot graph representing the active variables and observations taking PC1 and PC2 under different conditions presented in Figure 2. The PC with Eigen value >1 that described at least 5% of the fluctuations in the data was evaluated in the current investigation, according to the criteria provided by Brejda et al. (2000) and Dhakal et al. (2020). The PC with the highest Eigen values and variables with the highest factor loading was deemed to be the most representational of system characteristics. Only five of the 13 principal components (PCs) had an Eigen value greater or nearer to 1. As a result, these five PCs were given due consideration for additional explanation. For the variables under research, the PC-1, PC-2, PC-3, PC-4, and PC-5 genotypes showed 29.82%, 22.489%, 9.008%, 8.366%, and 7.007% variability, in irrigated; variability 19.281%, 17.258%, 12.214%, 10.662% and 8.806% in rainfed; variability 20.056%,

16.165%, 13.144%, 12.268% and 8.905% in TSD conditions respectively. Each subsequent component accounts for as much of the remaining variability in the data as possible, with the first and second PCs accounting for as much as possible in all three conditions.

The factor loading for thirteen yield-related traits showed in Table 6. Only the most highly loaded factors were retained for further analysis within each PC. From the complex matrix it was revealed that the PC-1 (first PC) accounted for the highest variability (29.82%) was mainly related to traits like biological yield per plot and plant height in irrigated condition; variability in rainfed (19.281%) and TSD (20.056%) was mainly related to traits like total number of grains per panicle and number of filled grains per panicle in both rainfed and TSD conditions. Table 7 showed the top ten (bold values).

Principal Component scores for all genotypes, split down into five principal components. These scores can be used to develop exact selection indices, the intensity of which is determined by the variability described by each principal component. A high PC score for a given accession in a certain component indicates that the variables in that genotype have high values. It was revealed in the results that Bharma tripal (2.976), Kali Mai (3.131) and Khurabal (3.598) had the best PC score in PC-1; Kali Mai (6.564), Tedesi (3.120) and Bisni (4.482) in PC-2; Basa bhog (2.824), Swarna (13.872) and Khurabal (2.183) in PC-3; Mahamaya (3.118), Hathi panjara (3.260) and Roti (3.186) in PC-4, and Moroberekan (2.053), Roti (3.435) and Barangi (2.484) in PC-5 under irrigated, rainfed and TSD conditions respectively.

The results were found in agreement with Raj *et al.*, 2020 and Burman *et al.*, 2021 revealed that first PC showed the most variability among the five principal components, all of the principal components contributed positively to yield and its contributing traits. As a result, Tarunbhog, Safri 17 and Basmati 370 are the common genotypes with high PC1 scores and highly correlated with yield component traits under RF and TSD conditions.

Hence, selecting these genotypes would result in higher yield and yield related traits under drought condition.

The PCA emphasizes the features with the maximum variability. As a result, intensive selection processes can be developed to improve yield and yield-related traits rapidly. PCA can also be used to rank genotypes based on PC scores in the corresponding component. The results showed that the selected accessions might be utilized as donors in a varietal development programme to improve yield attributes.

# Conclusion

Both multivariate statistical analysis tools showed the existence of the wide genetic diversity among the germplasm lines in the study. In accordance with the current findings, the cluster-I have more genetic variability in specific conditions. Hence, the genotypes present in this cluster could be selected as parents in future breeding programmes. The traits biological yield per plot, grain yield per plot, number of tillers per m<sup>2</sup> and total number of grains per panicle revealed that, they play a crucial role in genetic divergence among fifty-two rice genotypes and we would select these traits of rice lines for the diversity purpose. PCA revealed that, PC1 was dominated by the yield and yield contributing traits such as biological yield per plot and plant height under IR condition and the traits total number of grains per panicle and number of filled grains per panicle under both RF and TSD conditions. So, selecting the germplasm lines with a high score in PC1 could result in greater yield and yield related characters.

# Acknowledgement

The first author is thankful to Department of Science and Technology - Inspire fellowship for financial support during the period.

# **Conflict of interest**

The authors declare that they have no conflict of interest.

## References

- Amegan, E., Efisure, A., Akoroda, M., Shittu, A., & Tonegnikes, F. (2020). Genetic Diversity of Korean Rice (*Oryza sativa* L.) Germplasm for Yield and Yield Related Traits for Adoption in Rice Farming System in Nigeria. International Journal of Genetics and Genomics, 8(1), 19-28.
- Bekis, D., Mohammed, H., & Belay, B. (2021). Genetic divergence and cluster analysis for yield and yield contributing traits in lowland rice (*Oryza sativa* L.) genotypes at Fogera, NorthWestern Ethiopia. *International Journal of Advanced Research in Biological Sciences*, 8(5), 1-11.
- Brejda, J. J., Karlen, D. L., Smith, J. L., & Allan, D. (2000). Identification of regional soil quality factors and indicators: II. Northern Mississippi Loess Hills and Palouse Prairie. *Soil Science Society of America Journal*, 64, 10.2136/sssaj2000.6462125x.
- Burman, M., Nair, S. K., & Sarawgi, A. K. (2019). Genetic Diversity Analysis in Unique Rice (*Oryza sativa* L.) of Chhattisgarh, India. *International Journal of Current Microbiology and Applied Sciences*, 8(11), 1096-1099.
- Burman, M., Nair, S.K., & Sarawgi, A.K. (2021). Principal Component Analysis for Yield and its Attributing Traits in Aromatic Landraces of Rice (*Oryza sativa* L.). *International Journal of Bio-resource and Stress* Management, 12(4), 303-308.
- Dhakal, A., Pokhrel, A., Sharma, S., & Poude, A. (2020). Multivariate Analysis of Phenotypic Diversity of Rice (*Oryza sativa* L.) Landraces from Lamjung and Tanahun Districts, Nepal. *International Journal of Agronomy*, 1-8.
- Gaur, A., Parray, G. A., Shikari, A. B., & Najeeb, S. (2019). Capturing the Genetic Diversity for Grain Quality Attributes in a Set of Temperate Rice (*Oryza sativa* L.) Germplasm by Cluster Analysis and the Assessment of Wx gene Polymorphism. *International Journal of Pure and Applied Bioscience*, 7(3), 67-73.

- Iqbal, T., Hussain, I., Ahmad, N., Nauman, M., Ali, M., Saeed, S., Zia, M., & Ali, F. (2018). Genetic Variability, Correlation and Cluster Analysis in Elite lines of Rice. *Journal of Scientific Agriculture*, 2, 85-91.
- Kumari, N., Kumar, R., Kumar, A., & Singh, U.K. (2019). Principal component analysis of morpho-physiological traits in mutants lines of rice under submerged condition. *The Pharma Innovation Journal*, 8(4), 402-407.
- Raj, P., Kumar, A., Satyendra., Singh, S. P., Kumar, M., Kumar, R. R., Prasad, B. D., & Kumar S. (2020). Principal Component Analysis for Assessment of Genetic Diversity in Rainfed Shallow Lowland Rice (*Oryza sativa L.*). *Current Journal of Applied Science and Technology*, 39(48), 256-261.
- Ricepedia, (2020). Rice as food. <u>http://ricepedia.org/rice-as-food</u>.
- Shrestha, J., Subedi, S., Kushwaha, U., & Maharjan, B. (2021). Evaluation of growth and yield traits in rice genotypes using multivariate analysis. *Heliyon*, 7.
- Singh, P., & Narayanan, S. S. (2013). Assessment of Polygenic Variation. *Biometrical Techniques in Plant Breeding*, 15-23.
- Sudeepthi, K., Srinivas, T., Kumar, B. R., Jyothula, D., & Umar, S. N. (2020). Genetic Divergence Studies for anaerobic Germination Traits in Rice (*Oryza sativa L.*). *Current Journal of Applied Science and Technology*, 39(1), 71-78.
- USDA, (2020). Rice Sector at a Glance. https://www.ers.usda.gov/topics/crops/rice/rice-sector-at-a-glance/.
- **Publisher's Note:** ASEA remains neutral with regard to jurisdictional claims in published maps and figures.