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Birds time their activities in synchronization with daily and

provided by changes in day length (=photoperiod). Photoreceptor cells in an avian brain are localized in three 

independent neural structures, the retina of eyes, pineal gland and hypothalamus. Dee

localised particularly in the paraventricular organ (PVO) and lateral septal area (LSO) of hypothalamus are implicated 

in regulation of photoperiod induced reproductive response. DBPs relay the photoperiodic information to the

tuberalis thyroid hormone stimulating (TSH) expressing cells. The TSH mediated signalling mediates the photoperiod 

induced gonadotropins releasing hormone (GnRH) release from the pre optic area (POA). In addition to the GnRH, other 

neurohormones including the neuropeptides Y (NPY), vasoactive intestinal peptide (VIP), and the neurosteroids, 

especially the brain derived testosterone contribute to regulation of the overt reproductive response and behaviour in 

seasonal breeding avian species. Here, we br

hormone variations of the hypothalamus in the regulation of seasonal physiology, particularly in the long

species. 
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Introduction 
Adaptation to the environment that a species 

inhabits is of crucial importance. This is clearly 

reflected in adaptation for breeding which in most, 

if not all, species occurs when food resources in the 

surrounding are optimal and adequate to provide 

nourishment to the young ones. This is an absolute 

requirement, failing which will greatly compromise 

breeding success of the population and may 

endanger the species. In the wild, the ‘favourable’ 

time (season) for breeding is ensured by variables 

in the environment. For this reason, many mammals 

have evolved with a period of gestation in their 

reproduction. Mammals with a long gestation 

period such as goat, sheep and horses give birth to 

the young ones in times extending from winters to 

early-spring, while those with short ge

like rodents, dogs and ferrets give birth mostly 

during the summer months. In birds, the breeding 

patterns are very diverse, depending on the 

environment a species inhabits. At mid

latitudes, the annual breeding cycle in most, if n

all, birds are governed by an annual photoperiodic 

cycle or simply phased or synchronized by it. This  

is because at these latitudes, the most 
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Abstract 
Birds time their activities in synchronization with daily and seasonal periodicities in the environment, which is mainly 

provided by changes in day length (=photoperiod). Photoreceptor cells in an avian brain are localized in three 

independent neural structures, the retina of eyes, pineal gland and hypothalamus. Deep brain photoreceptors (DBPs) 

localised particularly in the paraventricular organ (PVO) and lateral septal area (LSO) of hypothalamus are implicated 

in regulation of photoperiod induced reproductive response. DBPs relay the photoperiodic information to the

tuberalis thyroid hormone stimulating (TSH) expressing cells. The TSH mediated signalling mediates the photoperiod 

induced gonadotropins releasing hormone (GnRH) release from the pre optic area (POA). In addition to the GnRH, other 

uding the neuropeptides Y (NPY), vasoactive intestinal peptide (VIP), and the neurosteroids, 

especially the brain derived testosterone contribute to regulation of the overt reproductive response and behaviour in 

seasonal breeding avian species. Here, we briefly review limited evidence on the roles of photoreceptors, and the local 

hormone variations of the hypothalamus in the regulation of seasonal physiology, particularly in the long

dic 

the environment that a species 

inhabits is of crucial importance. This is clearly 

reflected in adaptation for breeding which in most, 

if not all, species occurs when food resources in the 

surrounding are optimal and adequate to provide 

oung ones. This is an absolute 

requirement, failing which will greatly compromise 

breeding success of the population and may 

endanger the species. In the wild, the ‘favourable’ 

time (season) for breeding is ensured by variables 

reason, many mammals 

have evolved with a period of gestation in their 

reproduction. Mammals with a long gestation 

period such as goat, sheep and horses give birth to 

the young ones in times extending from winters to 

spring, while those with short gestation period 

like rodents, dogs and ferrets give birth mostly 

during the summer months. In birds, the breeding 

patterns are very diverse, depending on the 

environment a species inhabits. At mid- and high-

latitudes, the annual breeding cycle in most, if not 

all, birds are governed by an annual photoperiodic 

cycle or simply phased or synchronized by it. This  

udes, the most conspicuous 
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and reliable environmental periodicity is the annual 

change in day length (= photoperiod). Compared to 

this, at lower latitudes where annual photoperiodic 

cycle is of the low amplitude, the environmen

factors other than the photoperiod become 

important regulators of the breeding seasons.Most 

seasonal species of birds use annual photoperiod 

variation as cue, which they internally decode to 

determine the length of the day (hence night) and 

perhaps thus seasons (Bradstaetter et al., 2000; 

Kumar, 1997; Kumar and Follett, 1993; Kumar et 

al., 2007). Changes in day length (photoperiod) acts 

as a primary cue in regulation of seasonal cycles of 

reproduction, molt and migration (Cassone and 

Yoshimura, 2015; Kumar, 1997, Kumar et al., 

2010). There are extensive investigations, and 

photoperiodic regulation of reproduction has been 

shown in many species irrespective of the 

inhabiting latitudes (Follett, 1984; Kumar et al., 

2010; Wingfield and Farner, 1993). Becaus

annual photoperiod cycles do not vary year

the breeding time in such species is highly 

predictable. In subtropics, for example, long day 

breeding species inhabiting India, like the Indian 

weaver bird, Ploceus philippinus,

tree sparrow, Passer montanus
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provided by changes in day length (=photoperiod). Photoreceptor cells in an avian brain are localized in three 
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localised particularly in the paraventricular organ (PVO) and lateral septal area (LSO) of hypothalamus are implicated 

in regulation of photoperiod induced reproductive response. DBPs relay the photoperiodic information to the pars 

tuberalis thyroid hormone stimulating (TSH) expressing cells. The TSH mediated signalling mediates the photoperiod 

induced gonadotropins releasing hormone (GnRH) release from the pre optic area (POA). In addition to the GnRH, other 

uding the neuropeptides Y (NPY), vasoactive intestinal peptide (VIP), and the neurosteroids, 
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and reliable environmental periodicity is the annual 

change in day length (= photoperiod). Compared to 

this, at lower latitudes where annual photoperiodic 

cycle is of the low amplitude, the environmental 

factors other than the photoperiod become 

important regulators of the breeding seasons.Most 

seasonal species of birds use annual photoperiod 

variation as cue, which they internally decode to 

determine the length of the day (hence night) and 

s seasons (Bradstaetter et al., 2000; 

Kumar, 1997; Kumar and Follett, 1993; Kumar et 

al., 2007). Changes in day length (photoperiod) acts 

as a primary cue in regulation of seasonal cycles of 

reproduction, molt and migration (Cassone and 

mar, 1997, Kumar et al., 

2010). There are extensive investigations, and 

photoperiodic regulation of reproduction has been 

shown in many species irrespective of the 

inhabiting latitudes (Follett, 1984; Kumar et al., 

2010; Wingfield and Farner, 1993). Because, the 

annual photoperiod cycles do not vary year-to-year, 

the breeding time in such species is highly 

predictable. In subtropics, for example, long day 

breeding species inhabiting India, like the Indian 

Ploceus philippinus, and subtropical 

Passer montanus, begin their 

 



breeding season with the gonadal recrudescence in 

response to increasing day lengths of the late spring 

and summer, but end the breeding season with 

gonadal regression later in the summer when 

daylight is still longer in duration than those were 

photostimulatory during late spring (Chandola et 

al., 1975; Rani et al., 2007). These species are 

called photosensitive (or more commonly 

photoperiodic) birds, and selectively respond to the 

annual photoperiodic cycle (to inc

decreasing photoperiods). This is not surprising 

since light seems to have played a definitive role in 

the evolution of most, if not all species.

 

Thyroid-mediated transduction of photoperiodic 

response 

Photoperiod-induced changes in seasonal 

physiology and behaviour are associated with 

changes in the circulating hormone levels, in 

particular the sex steroids such as testosterone and 

estradiol hormones that regulate the overt metabolic 

responses including the thyroid hormone

(Goodson et al., 2005; Ramenofsky, 2011). Thyroid 

hormones are involved in the long

photostimulation (Cassone and Yoshimura, 2015) 

of reproductive responses in seasonal birds and 

mammals. On the other hand, elevated circulating 

sex steroids, in particular the testosterone levels 

have been found to be associated with socio

behaviours such as aggression, mating, solicitation 

and singing during the reproductively active phase 

in many birds (Ball and Balthazart, 2002; Goodson 

et al., 2005).Long-day induction of photoperiodic 

response begins with the photoperception by the 

deep brain photoreceptors. Photoreceptors are light 

sensing opsin containing cells that are coupled to a 

chromophore derived from an 11

vitamin A retinaldehyde, whic

phototransduction. Light absorbed by 

photoreceptors photoisomerizes the 11

retinaldehyde to all-trans retinaldehyde. This 

conversion of 11-cis to all

conformational change in the opsin molecules and 

initiates the phototransduction cascade via 

activation of the downstream signalling proteins 

(Wald, 1968). Unlike mammals, where only eyes 

are the photoreceptive structure, birds possess 

photoreceptive function in at least 3 tissues 

pineal and hypothalamus. However, th

photoreceptive structures do not independently 
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breeding season with the gonadal recrudescence in 

response to increasing day lengths of the late spring 

and summer, but end the breeding season with 

gonadal regression later in the summer when 

er in duration than those were 

photostimulatory during late spring (Chandola et 

al., 1975; Rani et al., 2007). These species are 

called photosensitive (or more commonly 

photoperiodic) birds, and selectively respond to the 

annual photoperiodic cycle (to increasing or 

decreasing photoperiods). This is not surprising 

since light seems to have played a definitive role in 

the evolution of most, if not all species. 

mediated transduction of photoperiodic 

changes in seasonal 

physiology and behaviour are associated with 

changes in the circulating hormone levels, in 

particular the sex steroids such as testosterone and 

estradiol hormones that regulate the overt metabolic 

responses including the thyroid hormones 

(Goodson et al., 2005; Ramenofsky, 2011). Thyroid 

hormones are involved in the long-day 

photostimulation (Cassone and Yoshimura, 2015) 

of reproductive responses in seasonal birds and 

mammals. On the other hand, elevated circulating 

cular the testosterone levels 

have been found to be associated with socio-sexual 

behaviours such as aggression, mating, solicitation 

and singing during the reproductively active phase 

in many birds (Ball and Balthazart, 2002; Goodson 

day induction of photoperiodic 

response begins with the photoperception by the 

deep brain photoreceptors. Photoreceptors are light 

sensing opsin containing cells that are coupled to a 

chromophore derived from an 11-cis form of 

vitamin A retinaldehyde, which is capable of 

phototransduction. Light absorbed by 

photoreceptors photoisomerizes the 11-cis 

trans retinaldehyde. This 

cis to all-trans induces a 

conformational change in the opsin molecules and 

ansduction cascade via 

activation of the downstream signalling proteins 

(Wald, 1968). Unlike mammals, where only eyes 

are the photoreceptive structure, birds possess 

photoreceptive function in at least 3 tissues – eyes, 

pineal and hypothalamus. However, these multiple 

photoreceptive structures do not independently 

regulate the photoperiod induced responses. It is 

largely proposed that they interact with one another 

to regulate the circadian and/or seasonal timing in 

birds, albeit the relative contribution v

species and also possibly with seasons of the year 

(see reviews Cassone and Menaker, 1984; Gwinner 

et al., 1997; Gwinner and Brandstätter, 2001; 

Kumar and Singh, 2006). Further, experimental 

evidences suggest that photoreceptors in the 

hypothalamus, called the deep brain photoreceptors 

(DBPs) play a critical role in regulation of the 

photoperiod induced reproductive responses. 

first evidence for the presence of DBPs came from 

the experiments done on Europena minnows 

(Phoxinus laevis) in 1911 by Karl von Frisch. An 

absence of both eyes and pineal gland did not 

interfere with the light-induced changes in skin 

colour in minnows. The first evidence of role of 

DBPs in regulation of photoperiodic induction of 

gonadal response came from Frisch’s

ducks (Anas platyrhynchos

placing a black cap on the head of ducks blocked 

the access of light to brain tissue and thus, did not 

induce the long-day mediated gonadal stimulation. 

Thereafter, many studies on bilaterally en

birds also suggested an active participation of 

extraretinal photoreceptors in controlling the 

reproductive responses to changes in day length in 

Japanese quail (Cutornix japonica

(Gallus gallus), house sparrows (

domesticus), white-crowned sparrows (

leucophrys gambelii) and ducks (Oishi et al., 1966; 

Menaker, 1968; Menaker and Keatts, 1968; 

Harrison and Becker, 1969; Ookawa, 1970a,b; 

Gwinner et al., 1971; Harrison, 1972). Until 

recently, many DBPs have been identified i

various species of photoperiodic birds, including 

rhodopsin, melanopsin, neuropsin and vertebrate 

ancient (VA) opsin. Neuropsin (also called opn 5) 

expressed in CSF-contacting neurons and VA

expressed in the anterior and medial hypothalamus 

have been linked to the photoreceptor mediated 

neuroendocrine signalling that regulates the 

seasonal breeding responses in birds (Halford et al., 

2009; Nakane et al., 2010). As proposed by Nakane 

et al. (2010), information about the photoperiodic 

environment is detected by the Opn5 neurons in the 

PVO and translated via G protein

into a biological action into the external zone of the 

ME, juxtaposed to pars tuberalis, PT, which is the 
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(see reviews Cassone and Menaker, 1984; Gwinner 
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amus, called the deep brain photoreceptors 
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photoperiod induced reproductive responses. The 

first evidence for the presence of DBPs came from 

the experiments done on Europena minnows 

1911 by Karl von Frisch. An 

absence of both eyes and pineal gland did not 

induced changes in skin 

colour in minnows. The first evidence of role of 

DBPs in regulation of photoperiodic induction of 

gonadal response came from Frisch’s study on 

Anas platyrhynchos) in 1935. In this study, 

placing a black cap on the head of ducks blocked 

the access of light to brain tissue and thus, did not 

day mediated gonadal stimulation. 
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birds also suggested an active participation of 
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reproductive responses to changes in day length in 
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crowned sparrows (Zonotrichia 
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rhodopsin, melanopsin, neuropsin and vertebrate 
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into a biological action into the external zone of the 

ME, juxtaposed to pars tuberalis, PT, which is the 



site of thyroid stimulating hormone

Tsh-β release.Thus, it is suggested that a highly 

conserved thyroid hormone-responsive molecular 

mechanism of the pars tuberalis mediates 

photostimulation of gonadal growth and 

development (see reviews Cassone and Yoshimura, 

2015; Nakane and Yoshimura, 2014; Surbhi and 

Kumar, 2014). Photostimulation begins with the 

concurrent activation of eya3 (

tsh� (thyroid stimulating hormone

genes in the pars tuberalis (PT) thyrotrophs 

(Majumdar et al., 2014; Nakao et al., 2008). Under 

a stimulatory photoperiod, thyroid stimulating 

hormone (TSH- a protein product of TSH

TSHβ) released from PT thyrotrophs activates and 

suppresses the transcription of genes coding for 

type 2 and 3 deiodinases (dio2

tanycytes lining the third ventricle, w

the conversion of T4 (thyroxine) into active T3 

(triiodothyronine, biologically active form) and rT3 

(reverse T3, biologically inactive form), 

respectively. T3 regulates the synthesis and/or 

release of GnRH (gonadotropin releasing hormone) 

from the preoptic area into the median eminence, 

and consequently the secretion of pituitary 

gonadotropins (Cassone and Yoshimura, 2015; 

Nakane and Yoshimura, 2014). Further, 

intracerebroventricular (ICV) injection of TSH has 

been shown to mimic the long

expression in the tanycytes, further corroborating 

the suggested role of Tshβ as an endocrine 

regulator of avian seasonal reproduction (Nakao et 

al., 2008). Further, enhanced local hypothalamic 

levels of T3 causes morphological changes in the 

glial-neuron interactions at the level of 

gonadotropin- releasing hormone (GnRH; a 

hypothalamic peptide) nerve terminals in the 

median eminence and thus control the GnRH 

secretion from the preoptic area, POA, into the 

hypophyseal portal system (Yoshimura e

Yamamura et al., 2004).  

 

Thyroid hormone mediated seasonal plasticity of 

GnRH neurons 

Immunoelectron microscopy of ME of Japanese 

quails revealed the GnRH neuro

modulated GnRH secretion when birds were 

transferred from short to long days. In short days, 

the endfeet of glial cells totally encapsulate the 

GnRH nerve terminals, thus retraining the contact 
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(reverse T3, biologically inactive form), 

respectively. T3 regulates the synthesis and/or 

release of GnRH (gonadotropin releasing hormone) 

m the preoptic area into the median eminence, 

and consequently the secretion of pituitary 

gonadotropins (Cassone and Yoshimura, 2015; 

Nakane and Yoshimura, 2014). Further, 

intracerebroventricular (ICV) injection of TSH has 

been shown to mimic the long-day induced Dio2 

expression in the tanycytes, further corroborating 

β as an endocrine 

regulator of avian seasonal reproduction (Nakao et 

al., 2008). Further, enhanced local hypothalamic 

levels of T3 causes morphological changes in the 

neuron interactions at the level of 

releasing hormone (GnRH; a 

hypothalamic peptide) nerve terminals in the 

median eminence and thus control the GnRH 

secretion from the preoptic area, POA, into the 

hypophyseal portal system (Yoshimura et al., 2003; 

Thyroid hormone mediated seasonal plasticity of 

Immunoelectron microscopy of ME of Japanese 

quails revealed the GnRH neuro-glial plasticity 

modulated GnRH secretion when birds were 

to long days. In short days, 

the endfeet of glial cells totally encapsulate the 

GnRH nerve terminals, thus retraining the contact 

between GnRH nerve terminals and basal lamina, 

the site of GnRH release. However, on exposure to 

long days, T3 binds to the gl

about morphological changes in its structure, 

causing a retraction of glial endfeet. This enables a 

close proximity between GnRH nerve terminals and 

basal lamina, which results in stimulation of 

gonadotropins secretion by the pituitary

(Yamamura et al., 2004). Hypothalamic GnRH 

release stimulates synthesis and secretion of 

anterior pituitary gonadostimulatory hormones viz. 

luteinizing hormone (LH) and follicle stimulating 

hormone (FSH). LH and FSH act on the target 

reproductive tissues and induce gonadal growth and 

thus the production of steroid hormones, viz. 

testosterone and estrogen (Ball, 1993; Wingfield 

and Farner, 1993).Based on localization in the 

brain, GnRH is recognized in two forms, GnRH

found expressed in the preoptic area 

GnRH-II found expressed in the midbrain (Perfito 

et al., 2011). It is suggested that GnRH

the pituitary gonadotropin secretion and thus 

facilitates seasonal timing of reproduction (Dawson 

et al., 2015). Increasing evidences also show

species variation in hypothalamic GnRH content in 

relation to the annual reproduction among 

seasonally breeding birds. There is an increase in 

GnRH immunoreactivity (

area) in response to increasing daylengths with 

peak during the breeding season, and this is 

followed by spontaneous decline with regression 

and photorefractoriness in absolute photorefractory 

species like the American tree sparrows (

arborea; Reinert and Wilson, 1996), European 

starlings (Sturnus vulgaris; Foster

house sparrows (Passer domesticus

1995), dark eyed Juncos (Junco hyemalis

et al., 2006), and redheaded buntings (

bruniceps; Surbhi et al., 2016). There can be 

differences in the expression pattern of GnRH

between species showing absolute and relative 

photorefractoriness in their photoinduced gonadal 

growth-involution cycle (Surbhi et al., 2015, 2016). 

GnRH-II, on the other hand, is a non

hypophysiotropic peptide system and present in a 

rather conserved sequence in the midbrain area 

lying posterior to the third ventricle. Evidences 

suggest that GnRH-II does not play a major role in 

pituitary regulation of reproduction in birds 

(Meddle et al., 2006). Evidences suggest the role of 

Photoperiodic regulation of reproduction in birds 
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GnRH-II in the regulation of r

associated behaviours in birds, independent of the 

GnRH-I (Maney et al., 1997; Perfito et al., 2011). 

Intracerebrovetricular (ICV) infusion of cGnRH

not cGnRH-I, has been shown to enhance 

solicitation behaviour in female white

sparrows (Maney et al., 1997). The season

age-dependent immunoreactivity also suggests the 

role of GnRH-II in reproduction associated 

processes in house sparrows (Stevenson and 

MacDougall-Shackleton, 2005). Interestingly, the 

reproductive flexibility of th

breeding birds such as zebra finch is attributed to 

the tonic activation of GnRH-I with the activation 

and inactivation of GnRH II in the breeding and 

non-breeding states, respectively (Perfito et al., 

2011). 

 

Other neurohormones involved i

responses 

Tsutsui and colleagues (2000) discovered GnIH 

(gonadotropins inhibiting hormone), which was 

found to express in the hypothalamic 

paraventricular nucleus (PVN) with projections 

extending to the median eminence (ME). This 

peptide has been found to directly inhibit 

gonadotropin release by the pituitary, mediated by 

GnIH receptors (Tsutsui et al., 2013). There has 

been a considerable effort in establishing its role in 

the regulation of seasonal reproductive cycle via 

inhibitory effects on the hypothalamic GnRH 

system and/ or anterior pituitary secretions (Tsutsui 

et al., 2013). Both, in vivo and 

administrations have been shown to inhibit the 

synthesis of LH-β and FSH-β in the chicken and 

quail pituitary glands (Ciccone et 

et al., 2006). A direct effect of GnIH on testes 

response via reduction in the LH/ FSH

testosterone secretion has also been suggested in 

house sparrows (Passer domesticus

Bentley, 2010). Also, a role of hypothalamic

(gonadotropin releasing hormone) in controlling 

GnRH activity has been suggested in house 

sparrows, Passer domesticus

starlings, Sturnus vulgaris (Bentley et al., 2003; 

Ubuka et al., 2008). Further, at the transcriptional 

level, increased gnih mRNA levels in hypothalamic 

explants from short days, compared to long days, 

paralleled the significantly reduced plasma LH 

levels and gonadal size in Japanese quail, 
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(gonadotropin releasing hormone) in controlling 

GnRH activity has been suggested in house 

Passer domesticus, and European 

(Bentley et al., 2003; 

Ubuka et al., 2008). Further, at the transcriptional 

mRNA levels in hypothalamic 

explants from short days, compared to long days, 

paralleled the significantly reduced plasma LH 

levels and gonadal size in Japanese quail, Coturnix 

c. japonica (Chowdhury et al., 2010). In addition to 

GnRH and GnIH, NPY and VIP play a regulatory 

role in the seasonal gonadal responses (Surbhi et 

al., 2015). NPY is known to affect several 

physiological functions in birds, including the 

regulation of food intake and energy homeostasis 

(Richardson et al., 1995), release of Gn

(Contijoch et al., 1993), sexual maturation (Fraley 

and Kuenzel, 1993), development of secondary 

sexual characters, such as song behaviour (Fiore et 

al., 1999). ICV injections of NPY affect testis 

development in chicken (Fraley and Kuenzel, 1993) 

and causes preovulatory surge of LH in hens 

(Contijoch et al., 1993). Further, NPY and GnRH

neurons are in close association in the POA, IN 

(infundibular nucleus) and ME in chicken 

hypothalamus (Kuenzel, 2000). The NPY protein 

and NPY mRNA are expressed in the

ME, PVN, which contain the GnRH and GnIH cells 

and fibres (Singh et al., 2013). Both anatomical and 

functional evidence support the role of NPY in 

avian reproduction. NPY may also exert an indirect 

regulatory role on reproduction by affecting the

feeding and energy homeostasis (Klingerman et al., 

2011).Similarly, VIP as a stimulatory factor for 

tonic secretion of pituitary prolactin regulates post

reproductive behaviours in birds, namely egg 

production, incubation and feeding of the offsprings 

(El Halawani et al., 1995, 1996, 1997). 

Immunoneutralization of VIP increases egg laying 

and inhibits the incubation behaviour in turkeys, 

Meleagris gallopavo (El Halwani et al., 1995, 

1996). Hypothalamic VIP mRNA and protein 

content of the INc complex (inf

IN and Inferior hypothalamic nucleus, IH) 

positively correlates with circulating prolactin 

levels during different reproductive stages in birds 

(Youngren et al., 1996). The close contacts of VIP 

with GnRH-I in the lateral septal organ (L

septal area (SA) and median eminence (ME) 

(Teruyama and Beck, 2001), and with opsins in the 

lateral septum (SL) and infundibular regions (IN; 

Silver et al., 1988) support the role of VIP in the 

reproduction and light perception, respectively. 

Evidence show that VIP induced prolactin secretion 

suppresses GnRH release (Sharp et al., 1998) and 

triggers gonadal regression (Youngren et al., 1996; 

Zadworny et al., 1988), with consequent 

stimulation of the incubation and nest

behaviours in birds (Opel and Proudman, 1989). 
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(Chowdhury et al., 2010). In addition to 

and VIP play a regulatory 

role in the seasonal gonadal responses (Surbhi et 

al., 2015). NPY is known to affect several 

physiological functions in birds, including the 

regulation of food intake and energy homeostasis 

(Richardson et al., 1995), release of GnRH 

(Contijoch et al., 1993), sexual maturation (Fraley 

and Kuenzel, 1993), development of secondary 

sexual characters, such as song behaviour (Fiore et 

al., 1999). ICV injections of NPY affect testis 

development in chicken (Fraley and Kuenzel, 1993) 

uses preovulatory surge of LH in hens 

(Contijoch et al., 1993). Further, NPY and GnRH-I 

neurons are in close association in the POA, IN 

(infundibular nucleus) and ME in chicken 

hypothalamus (Kuenzel, 2000). The NPY protein 

and NPY mRNA are expressed in the POM, IN, 

ME, PVN, which contain the GnRH and GnIH cells 

and fibres (Singh et al., 2013). Both anatomical and 

functional evidence support the role of NPY in 

avian reproduction. NPY may also exert an indirect 

regulatory role on reproduction by affecting the 

feeding and energy homeostasis (Klingerman et al., 

Similarly, VIP as a stimulatory factor for 

tonic secretion of pituitary prolactin regulates post-

reproductive behaviours in birds, namely egg 

production, incubation and feeding of the offsprings 

El Halawani et al., 1995, 1996, 1997). 

Immunoneutralization of VIP increases egg laying 

and inhibits the incubation behaviour in turkeys, 

(El Halwani et al., 1995, 

1996). Hypothalamic VIP mRNA and protein 

content of the INc complex (infundibular nucleus, 

IN and Inferior hypothalamic nucleus, IH) 

positively correlates with circulating prolactin 

levels during different reproductive stages in birds 

(Youngren et al., 1996). The close contacts of VIP 

I in the lateral septal organ (LSO), 

septal area (SA) and median eminence (ME) 

(Teruyama and Beck, 2001), and with opsins in the 

lateral septum (SL) and infundibular regions (IN; 

Silver et al., 1988) support the role of VIP in the 

reproduction and light perception, respectively. 

show that VIP induced prolactin secretion 

suppresses GnRH release (Sharp et al., 1998) and 

triggers gonadal regression (Youngren et al., 1996; 

Zadworny et al., 1988), with consequent 

stimulation of the incubation and nest-protective 

pel and Proudman, 1989).  



Further, in birds, steroids of both neural and 

peripheral origins are involved in the regulation of 

changes associated with the gonadal growth

regression cycle (Goodson et al., 2005). In the 

brain, testosterone (T) can bind directly to its own 

receptors (androgen receptor, ar) or, after its 

conversion to 17β-estradiol by aromatase enzyme 

(coded by cyp19 gene), to estrogen receptors, and 

thereby affect male sexual behaviours, aggression, 

territoriality, vocalization and other reproductive 

responses (Goodson et al., 2005; Ramenofsky, 

2011). Moreover, there can be species

specific variations in T-driven behaviours 

attributable to differences in production,

to estrogenic metabolites, and/ or dynamics of the 

androgen/ estrogen receptor sensitivity (Canoine et 

al., 2007; Hau et al., 2000; Soma et al., 2000). For 

example, brain androgen receptor and/or aromatase 

activity regulates aggression during t

breeding season when circulating T levels are low 

in song sparrows (Melopsiza melodia

2000) and tropical spotted antbirds (

naevioides; Hau et al., 2000). 

 

Conclusion 
Most temperate songbirds are highly dependent on 

photoperiod changes t for their reproductive 

capabilities. Photoreceptors play a key role in the 

perception of light and dark signals of the 

environment. DBPs seem to play a crucial role in 

regulating the biological clock governed avian 

physiological processes. Photoperiodic information 

is perceived by the photoreceptors, and processed 

in the brain through thyroid-hormone mediated 

phototransduction pathways that measure the 

photoperiodic time. Outputs from this pathway 

control the seasonally appropriate phenotypes b

regulating the synthesis and release of 

hypothalamic gonadotropins releasing hormone and 

pituitary gonadotropins. The possible connections 

of avian photoreceptors among themselves and with 

circadian and photoperiodic systems remain poorly 

understood. The regulation of overt reproductive 

physiology and behaviour includes the regulation of 

aggression, mating behaviour, vocalisations, visual 

displays, parenting and other social behaviours. 

Neurosteroids, especially testosterone is a 

formidable regulator of these reproduction 
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steroids of both neural and 

are involved in the regulation of 

changes associated with the gonadal growth-

Goodson et al., 2005). In the 

brain, testosterone (T) can bind directly to its own 

receptors (androgen receptor, ar) or, after its 

estradiol by aromatase enzyme 

gene), to estrogen receptors, and 

behaviours, aggression, 

territoriality, vocalization and other reproductive 

responses (Goodson et al., 2005; Ramenofsky, 

2011). Moreover, there can be species- and season-

driven behaviours 

attributable to differences in production, conversion 

to estrogenic metabolites, and/ or dynamics of the 

androgen/ estrogen receptor sensitivity (Canoine et 

al., 2007; Hau et al., 2000; Soma et al., 2000). For 

example, brain androgen receptor and/or aromatase 

activity regulates aggression during the non-

breeding season when circulating T levels are low 

Melopsiza melodia; Soma et al., 

2000) and tropical spotted antbirds (Hylophylax 

Most temperate songbirds are highly dependent on 

od changes t for their reproductive 

capabilities. Photoreceptors play a key role in the 

perception of light and dark signals of the 

environment. DBPs seem to play a crucial role in 

regulating the biological clock governed avian 

toperiodic information 

is perceived by the photoreceptors, and processed 

hormone mediated 

phototransduction pathways that measure the 

photoperiodic time. Outputs from this pathway 

control the seasonally appropriate phenotypes by 

regulating the synthesis and release of 

hypothalamic gonadotropins releasing hormone and 

pituitary gonadotropins. The possible connections 

of avian photoreceptors among themselves and with 

circadian and photoperiodic systems remain poorly 

regulation of overt reproductive 

physiology and behaviour includes the regulation of 

aggression, mating behaviour, vocalisations, visual 

displays, parenting and other social behaviours. 

Neurosteroids, especially testosterone is a 

hese reproduction 

associated behaviours in seasonally breeding 

songbirds. 
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