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The current study aims to inter-compare the performance efficiency of the single 
and the dual source surface energy balance modeling approaches, namely 
EEFlux and SETMI, respectively for real time catchment scale - crop water 
demand estimations. For this, the afore-stated two surface energy balance 
modelling approaches were applied on the Narmada Canal Project, Sanchore, 
Rajasthan, India for estimating catchment scale actual evapotranspiration (ETa) 
values for the Rabi cropping seasons of the years 2013-14 and 2018-19, after 
incorporating the basic satellite data derived inputs viz. Land use, Land surface 
temperature and Gridded weather data. Due to the non-availability of the 
catchment scale ground based daily reference evapotranspiration (ETo) values 
for the study area, the Global Land Data Assimilation System based gridded 
meteorological data product was utilized, as a substitute for obtaining observed 
actual evapotranspiration (ETa) values for the investigated Rabi seasons of the 
study area. These actual evapotranspiration values were compared with those 
estimated through the single source, EEFlux and the dual source, SETMI 
modelling approaches to ascertain their comparative performance efficiency 
through the use of the five statistical indices viz. Mean Absolute Error, Root 
Mean Square Error, Mean Bias Error, Nash-Sutcliffe Efficiency and the Index 
of Agreement. The investigations revealed almost at par performance of the two 
modelling approaches. However, it was concluded that in contrast to the more 
detailed dual source approach i.e., SETMI, the simple single source approach 
i.e., EEFlux seemed to be more promising due to its user-friendly 
implementation and input data automation. 

 
Introduction 
India currently ranks 13th among the 17 most water-
stressed nations, presenting a concerning scenario. 

The impending impacts of global climate change, 
leading to a warmer climate, are expected to worsen 
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this water scarcity. This is primarily due to an 
intensified hydrological cycle caused by rising 
temperatures, resulting in increased evaporation 
rates, shifts in precipitation patterns in terms of both 
intensity and seasonality, and changes in vegetation 
and land cover dynamics. In India, agriculture sector 
utilizes about 85% of available water resource 
followed by 8% and 7% by the domestic and 
industrial sectors respectively. Canal irrigation, 
coupled with groundwater, has undeniably played a 
vital role in accelerating agricultural production of 
India for meeting burgeoning population needs. 
Thus, in view of the looming climate change related 
threats it is likely that any further shortfall in water 
supply, especially in the already vulnerable arid and 
semi-arid regions, is likely to intensify the 
competition for water use across various economic, 
social, and environmental applications besides food 
production. 
Canal irrigation techniques were originally designed 
with an intent to minimize disparities in water 
distribution among various users, however 
significant shortcomings have emerged in its 
functioning, primarily due to its reliance on a supply-
based, rather than a demand-based system. This has 
adversely impacted its efficiency and effectiveness, 
giving rise to several various issues of concern such 
as uneven water distribution leading to over-
irrigation in head reaches and reduced supplies in tail 
reaches along with inflexible water allocations. To 
implement an economically equitable water 
distribution irrigation system, a transition from 
supply based to near real time demand-based 
irrigation systems is essential. Accurate estimation 
of actual evapotranspiration (ETa) can play a pivotal 
role in this shift, as it represents the earth’s principal 
outgoing energy flux related to the water cycle 
dynamics. Globally, the ETa accounts for nearly 
60% of the mean precipitation inputs (Vorosmarty et 
al., 2010) highlighting its significant implications 
for numerous geophysical applications including 
integrated water resources management, weather 
forecasting, climate change analysis, and irrigation 
water demand assessment. (Dai et al., 2022; 
Kushwaha et al., 2022; Salam et al., 2020). Point 
scale field observations offer satisfactory solutions 
for ETa computation over homogenous surfaces. 
However, extrapolation of these point values over 
diverse spatial and temporal scales includes several 

underlying complexities due to the geographical 
variability in land surface and environmental 
conditions (Singh et al., 2008; Teixeira et al., 2009). 
These issues have been proficiently dealt with 
regular updates in remote sensing-based 
methodologies by indirectly quantifying spatially 
distributed parameters required for ETa estimation. 
Courault et al., (2005) classified remote sensing-
based evapotranspiration techniques in four major 
categories viz. Direct Empirical Methods, Residual 
Methods of Energy Budget, Deterministic Methods 
and Inference or Vegetation Index Methods. 
Amongst these, residual method of energy budget is 
the most widely used methods for ETa determination 
because of its ease of applicability and readily 
available remote sensing inputs.  
Residual method of energy budget is further 
classified into single and dual-source model 
categories based on distinct treatment of the soil-
plant-atmosphere interface. The dual-source 
approaches treat soil as well as vegetation 
components individually for apportioning linked 
turbulent heat fluxes while the single-source 
modeling approaches use individual resistance as a 
lumped composite parameter. Thus, for 
homogeneous vegetative conditions, a single-source 
modeling approach might be suitable. While, under 
heterogenous partially vegetated conditions, a two-
source modelling approach that is capable of more 
genuine representation of the turbulent and radiation 
exchanges (Verhoef et al., 1997; Merlin & 
Chehbouni, 2004; Norman et al., 2000; Huntingford 
et al., 2000) is expected to replicate the earth’s 
surface energy balance with higher accuracy 
(Norman et al., 1995). However, despite all this, it 
has been reported by several researchers that even an 
appropriately parameterized simple single-source 
modeling approach may represent surface energy 
balance satisfactorily (Kustas and Norman, 1996; 
Troufleau et al., 1997; Bastiaanssen et al., 1998). 
Though strengths and limitations of various residual 
methods of energy budget have been extensively 
reviewed (Gowda et al., 2008; Li et al., 2009; Wang 
and Dickinson, 2012; Liou and Kar, 2014; Kool et 
al., 2014; Zang et al., 2016) and mostly validated 
across irrigated croplands of USA, China, Mongolia, 
South Korea, and Japan yet scanning of literature 
revealed almost no assessment of such minimum 
resource and data demanding approaches on any 
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resource/ data crunched water scarce regions of the 
world.  
In view of the afore-stated knowledge gaps, the 
present study thus basically aims to cross-compare 
the performance efficiency of one of the latest and 
the most automated data intensive single source 
energy balance models viz., EEFlux with yet another 
latest dual source, but data-extensive, energy 
balance model named SETMI on the country’s first 
sprinkler-fed Narmada Canal Command situated in 
the arid Rajasthan state of India, and to thereby 
assess the feasibility of such satellite based 
approaches for transforming the prevailing supply 
driven irrigation system to the  near real time 
demand-driven system and for thereby mitigating 
climate induced water stresses in the resource-poor 
arid croplands. 

Material and Methods 
Study Area 
The Narmada Canal Project (study) area (figure 1), 
located in the Barmer and Jalore district of 
Rajasthan, India, within the geographical co-
ordinates of 240 37’- 250 18’ N latitude and 710 3’- 
710 52’ E Longitude, comprises of 2.46 lakh ha 
command area. The climate of the region varies from 
arid to semi-arid as it falls in the two agroclimatic 
zones namely, the arid western plains and the 
transitional plains of Luni basin. Due to erratic, 
unevenly distributed and less than 500 mm annual 
rainfall along with substantial diurnal temperature 
variations, the study area experiences frequent crop 
failures due to droughts.  

 
Figure 1(a): Location map of the study area (b) Study area boundary in Rajasthan state (c) Map showing 
Rajasthan state boundary within Indian national boundary 
 
Modelling approaches for estimating actual 
evapotranspiration 
EEFlux model  
The Google Earth Engine Evapotranspiration Flux 
(EEFlux) is an automated version of METRIC 
(Mapping Evapotranspiration at high Resolution 
with Internalized Calibration) which is developed 
and designed within the Google Earth Engine (GEE) 
(Allen et al., 2007). This software is collaboratively 
developed by a group of researchers from the Desert  

 
Research Institute, University of Nebraska-Lincoln, 
and the University of Idaho, with financial assistance 
provided by the Google. EEFlux enable users to 
acquire evapotranspiration maps in a matter of 
seconds using Landsat 5,7 or 8 scenes stored in the 
GEE cloud platform (Allen et al., 2015). EEFlux 
utilizes European Space Agency (ESA) GlobCover 
land use map with an approximate resolution of 300 
m for Indian continent. For locations outside the 
United States, EEFlux utilizes Climate Forecast 
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System Reanalysis (CFSR) gridded weather data 
(http://cfs.ncep.noaa.gov/cfsr/) (Saha et al., 2010) 
and six hourly CFSv2 operational analysis (Yuan et 
al., 2011; Saha et al., 2013). For current study 
Landsat 8 images were processed on EEFlux version 
0.20.3. 
SETMI model 
The Spatial evapotranspiration modeling interface 
(SETMI) is a hybrid modelling interface (Neale et 
al., 2012) combining Two Source Energy Balance 
(TSEB) ET modal (Norman et al., 1995) and a 
reflectance-based crop coefficient (Kcbrf) water 
balance modal (Neale et al., 1989). It was developed 
jointly by collaborators from Utah State University 
and the University of Nebraska-Lincoln, USA (Geli 
and Neale, 2012). This interface operates within the 
ESRI ArcGIS environment and is coded in Visual 
Basic.NET. In our study, only the TSEB model 
within the SETMI interface was used for ETa 
estimation. Required input included multispectral 
images, radiometric surface temperature images (in 
0C), land cover classification image and weather 
parameter table.  
 
Model input data generation 
The study area could be covered in three Landsat 8 
satellite data tiles (having following paths/rows viz., 
149/43, 150/43 and 150/42), that where directly 
downloaded from the https://earthexplorer.usgs.gov/ 
website and mosaiced together to achieve a single 
input image (Figure 2) for the entire study area, for 
the nearest satellite pass dates. Table 1 illustrates the 
exact dates for which the afore-stated satellite 
images were downloaded and mosaiced together for 
the study area. The so downloaded and mosaiced 
satellite images for the band Nos. 3, 4, and 5 of the 
Landsat 8 were subjected to level-1 supervised 
classification to generate land use/ land cover maps 
(as illustrated in Figure 3 and 4) under three primary 
land use classes viz. Cropped area, bare soil and 
open water while band 10 of Landsat 8 was used for 
generating the land surface temperature images 
through ArcGIS software.  
Besides these afore-stated inputs, the SETMI model 
requires instantaneous and daily reference 
evapotranspiration (ETo) data to scale modelled 
instantaneous latent heat flux into daily ETa values 
after having ETo values multiplied with the crop 
coefficient values for the dominant crop being 

cultivated during Rabi season in the study area. 
However, due to the unavailability of ground based 
meteorological data for providing instantaneous 
meteorological parameters and daily ETo at the 
satellite overpass time for the study area, Global 
Land Data Assimilation System’s gridded 
meteorological data product namely, 
GLDAS_NOAH025_3H was employed as a 
substitute. The Global Land Data Assimilation 
System (GLDAS) is a terrestrial modelling system 
developed jointly by the NASA Goddard Space 
Flight Center (GSFC) and National Oceanic and 
Atmospheric Administration and is available at a 
spatial and temporal resolution of 0.250 × 0.250 and 
3 hours from the reference site, 
https://ldas.gsfc.nasa.gov. Thus, the afore-stated 
three hourly GLDAS data files, in NetCDF format, 
were downloaded for the Rabi season of the 2013-14 
and 2018-19 and executed in a MATLAB script to 
extract the relevant weather parameters in .xls 
format to compute ETo values using FAO Penman-
Monteith equation (Allen et. al., 1998). Thereafter, 
the instantaneous value of ETo at satellite overpass 
time were determined by linearly interpolating ETo 
values available prior and after the satellite overpass 
time. Lastly, a weather parameter table was prepared 
as a Microsoft excel spreadsheet, containing 
instantaneous values of incident solar radiation, air 
temperature, wind speed, barometric pressure, 
vapour pressure and instantaneous and daily ETo. A 
detailed flowchart depicting the afore-stated 
methodology for estimating ETa through SETMI 
modelling framework is illustrated in figure 5. 
As per the NCP’s detailed project report, the study 
area has been reported to be predominantly 
cultivated with Cumin (Cuminum cyminum), having 
an average crop duration of 120-130 days, during 
Rabi season. Figure 6 illustrates growth stage 
specific crop coefficient (Kc) values for the Cumin 
crop. Thus, for computing the observed ETa values, 
the aforementioned crop coefficient values were 
multiplied by the ETo values computed through 
FAO Penman-Monteith equation using GLDAS 
datasets. The so obtained ETa values (i.e., the 
observed ETa) were compared with the SETMI and 
EEFlux model estimated ETa values (i.e., the 
predicted ETa) to assess their performance 
efficiency in terms of the following five statistical 
indices as illustrated in Table 2.   
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Figure 2: Mosaiced Landsat 8 satellite images for the study area 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Representative land use/ land cover map of study area during Rabi season (2013-14) 
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Figure 4: Representative land use/ land cover map of study area during Rabi season (2018-19) 
model performance assessment 
 

 
Figure 5: Flow chart depicting methodology used in actual evapotranspiration (ETa) estimation using SETMI 
model 
 
The Mean Bias Error (MBE) was employed to assess 
the tendency of the model to under or over-predict. 
Though, a value of zero  denotes no bias but it need 
ot necessarily represent an error absence. Thus, 
besides MBE, Mean Absolute Error (MAE) and the  

 
Root Mean Square Error (RMSE) were also 
deployed to not only determine the average errors, 
irrespective of their directions, in the model 
prediction sets but to also quantify their spread. 
Nash-Sutcliffe efficiency (NSE), a normalized 
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Table 1: Path/ Row specific dates of the downloaded Landsat 8 images during crop growing season for the 
study area 

Crop growth stage specific 
downloaded Images  

Rabi season 2013-2014  (15th Nov – 15th Mar)  Rabi season 2018-2019 (15th Nov – 15th Mar) 
149/43 150/43 150/42 149/43 150/43 150/42 

Initial 26-11-2013 17-11-2013 17-11-2013 24-11-2018 01-12-2018 01-12-2018 

Vegetative 12-12-2013 03-12-2013 03-12-2013 26-12-2018 02-01-2019 02-01-2019 
Mid-season 28-12-2013 19-12-2013 19-12-2013 11-01-2019 18-01-2019 18-01-2019 

Late-season 02-03-2014 09-03-2014 09-03-2014 27-01-2019 03-02-2019 03-02-2019 

Late-season - - - 28-02-2019 07-03-2019 07-03-2019 
* Images for the dates illustrated in each row under columns marked Rabi season (2013-14 and 2018-19) were mosaiced together to generate 
a single image of the study area  
 
Table 2: Description for various statistical indices used for model performance assessment 

Statistic Mathematical Expression Range  Best 

Mean Bias Error MBE = (1/N) ∑ (Pi −  Oi)   −[ ∑ (Oi)] to ∞ 0 

Root Mean Square Error RMSE = (1/N)  ∑  (Pi −  Oi )  0 to ∞ 0 

Mean Absolute Error MAE = (1/N) ∑ |Pi −  Oi | 0 to ∞  0 

Nash Sutcliffe Efficiency NSE = 1 – [ 
∑ (    )  

∑ (   )  
] - ∞ to 1 1 

Index of Agreement 
(d-index) 

d = 1 – [ 
∑ (    )   

∑ (  – |  – |)   
] 0 to 1 1 

Pi = Predicted ETa; Oi = Observed ETa; 𝐏, 𝐎 = Mean of predicted and observed ETa respectively; N = Total number of data record 
 
Table 3: Catchment scale mean observed vs. predicted ETa of the agricultural areas in Narmada Canal Project 
during (2013-14) Rabi season  

Date Crop Growth Stage GLDAS_ET0 Kc  GLDAS_ETa 
EEFlux_ETa (mm/d) 

SETMI_ETa 
(mm/d) 

mean 𝛔 mean 𝛔 
26/11/2013 Initial 3.56 0.48 1.71 1.59 0.61 2.88 0.69 
12/12/2013 Vegetative 3.47 1 3.47 2.4 0.79 2.38 0.43 
28/12/2013 Mid-season 3.38 1.12 3.79 4.38 1.49 2.97 0.94 
02/03/2014 Late-season 4.58 0.4 1.83 2.21 0.71 3.32 1.07 

Figure 6: Seasonal crop coefficient values for Cumin (Cuminum cyminum) crop 
 

statistical index was also utilized to evaluate the 
predictive capability of the model. Positive values of 
NSE indicate an acceptable performance level while 
negative values designate unsatisfactory 
performance (Nash and Sutcliffe, 1970; Moriasi et 
al., 2007). However, as NSE is particularly sensitive 

to high peaks therefore another index of agreement 
(d-index) that quantifies the prediction error between 
0 and 1 was also applied. The mathematical 
expressions for all these statistical indices are 
provided in Table 2. 
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Results and Discussion 
Seasonal trend of EEFlux estimated actual 
evapotranspiration 
The ETa values estimated through EEFlux 
modelling approach (EEFlux-ETa) during the Rabi 
season of 2013-14 (Table 3) exhibited considerable 
variation, ranging from the lowest value of 1.59 
mm/d (with a standard deviation, σ of 0.61 mm/d)  
during initial crop growth stage (i.e., on 11-26-2013) 
to the highest value of 4.38 mm/d (with σ of 1.49 
mm/d) during mid-crop growth stage (i.e., on 12-28-
2013). The lower ETa observed during the initial 
crop growth stage could be attributed to smaller leaf 
areas and limited transpiration rates while, as the 
crop matured and advanced through its 
developmental stages, the ETa values gradually 
increased, reaching their peak during the mid-crop 
growth stage. This escalation could be lucidly 
attributed to the increased transpiration due to 
increased crop growth and ground coverage, which 
eventually reached its maximum during the mid- 
crop growth stage. Subsequently, with the onset of 
the late-crop growth stage, there was a gradual 
decline in ETa primarily due to the crop maturity and 
the prevailing dry soil conditions. The seasonal ETa 
trend of estimated through the EEFlux model during 
the Rabi season 2013-14 was thus observed to 
completely conform to the widely accepted pattern 
of ETa dynamics during any crop growing season. 
Similarly, during the Rabi season of 2018-19 (Table 
4), the EEFlux model computed ETa values were 
observed to be ranging from the lowest value of 0.92 
mm/d (with σ of 0.74 mm/d) during initial crop 
growth stage to the highest value of 2.43 mm/d (with 
σ of 1.47 mm/d) during late-crop growth stage. 
However, during 2018-19 Rabi season the ETa 
values during mid-crop growth stage were observed 
to be significantly lower than those observed during 
the late-crop growth stage of the year 2018-19 
primarily due to the desert locust (Schistocerca 
gregaria) attack during Rabi season of the 2018-19, 
as reported by the local farmers and authorities of the 
study area which resulted in significant decline in the 
overall crop cover and thus ETa of the study area. 
 
Seasonal trend of SETMI estimated actual 
evapotranspiration 
In contrast to the EEFlux model the SETMI 
estimated ETa (SETMI_ETa) values exhibited 

significant deviations from the general trend of 
widely accepted pattern of ETa dynamics during any 
crop growing season as these were observed to be 
the highest during late crop growth stage (3.32 mm/d 
with σ of 1.07 mm/d) and the lowest (2.38 mm/d 
with σ of 0.43 mm/d) during crop vegetative stage. 
Even for the subsequent Rabi season of 2018-19, the 
SETMI model predicted the highest ETa value (2.21 
mm/d with σ 0.67 mm/d) for the initial crop growth 
stage and the lowest value for the late crop growth 
stage (ETa of 1.4 mm/d and σ 0.63 mm/d). Further, 
even the mid-season SETMI predicted ETa value 
was observed to be lower than that for the late crop 
growth stage (1.86 mm/d with 0.74 mm/d).  Though 
this decrease can presumably be attributed to the 
incident desert locust attack during that season/ year 
yet it appeared to be also associated to perhaps the 
poor parameterization of the TSEB algorithm within 
the SETMI interface, specifically during the initial 
and the late crop growth stages as evident from the 
SETMI estimated ETa trend for the Rabi season of 
2013-14.  
 
Observed vs predicted actual evapotranspiration 
Figures 7 and 8 illustrate observed (i.e., 
GLDAS_ETa, in mm/d) vs. predicted actual 
evapotranspiration rates (Modelled_ETa, in mm/d) 
as obtained through the EEFlux (EEFlux_ETa, 
Table 3 and 4) and the SETMI models (SETMI_ETa, 
Table 3 and 4) for the Rabi seasons of (2013-14) and 
(2018-19), respectively. While for assessing the 
comparative performance efficiency of the two 
modelling approaches, the afore-generated data were 
subjected to the statistical indices illustrated in Table 
5. Cross comparison of these statistical index values 
revealed that the EEFlux model seemed to be 
associated with much lower RMSE values (0.64 
mm/d) than the SETMI model (1.17 mm/d), during 
2013-14 while SETMI model seemed to be 
associated with much lower RMSE values (1.83 
mm/d) than the EEFlux model (2.04 mm/d), during 

2018-19. However, on considering all data points for 
both the study periods/ seasons, the RMSE values for 
both the modelling approaches were found to be at 
par (i.e., 1.57 to 1.58 mm/d). Though this was also 
observed to be the case for the Mean Absolute Error 
(MAE) index values, yet the analysis revealed that 
the overall MAE values for both seasons (Rabi 2013-
14 and Rabi 2018-19) put together were significantly  
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Table 4: Catchment scale mean observed vs. predicted ETa of the agricultural areas in Narmada Canal Project 
during (2018-19) Rabi season 

Date Crop Growth Stage GLDAS_ET0 Kc  GLDAS_ETa 
EEFlux_ETa (mm/d) SETMI_Ea (mm/d) 
mean 𝛔 mean 𝛔 

24/11/2018 Initial 4.02 0.4 1.61 0.92 0.74 2.21 0.67 
26/12/2018 Vegetative 3.56 1.12 3.99 1.4 0.92 1.81 0.66 
11/01/2019 Mid-season 3.77 1.14 4.30 1.05 0.36 1.86 0.74 
27/01/2019 Late-season 3.81 1.1 4.19 2.43 1.47 1.88 0.83 
28/02/2019 Late-season 4.80 0.4 1.92 1.72 0.85 1.4 0.63 

 
Table 5: Values of agreement indices for computing model performance 

Statistical 
Indices 

Rabi Period_2013-14 Rabi Period_2018-19 Both Seasons Pooled 
EEFlux SETMI EEFlux SETMI EEFlux SETMI 

RMSE (mm/d) 0.64 1.17 2.04 1.83 1.58 1.57 
MAE (mm/d) 0.54 1.14 1.70 1.61 1.18 1.40 
MBE (mm/d) 0.05 -0.19 1.70 1.37 0.97 0.68 
NSE 0.80 0.34 -0.06 0.15 0.19 0.21 
d-index 0.95 0.78 0.29 0.31 0.63 0.55 

 

Figure 7: Observed verses predicted actual evapotranspiration (ETa) for Rabi season of 2013-14 
 

Figure 8: Observed verses predicted actual evapotranspiration (ETa) for Rabi season of 2018-19 



 
Single vs dual source surface energy balance model  

 

93 
Environment Conservation Journal 

     
 

lower for the EEFlux model (1.18 mm/d) than the 
SETMI model (1.40 mm/d). Further, though the 
EEFlux model was observed to be associated with 
somewhat higher bias than the SETMI model (as 
evident from the statistics on the pooled data in last 
two column of the row illustrating MBE index 
values under Table 5) yet the pooled Nash-Sutcliffe 
Efficiency index (NSE) and the index of agreement 
(d-index) values for the two approaches appeared to 
be quite comparable, with EEFlux modelling 
approach having a visible edge over the SETMI 
modelling approach particularly during 2013-14 
Rabi season.  
The investigations thus illustrated at par 
performance of both EEFlux and SETMI models in 
the arid region of the Narmada Canal Project of 
Rajasthan, India and thereby re-iterated that it’s not 
necessary that a more detailed two-source surface 
energy balance approach, capable of computing 
surface energy balance of heterogeneous surfaces 
with greater accuracy, be outperforming a simple 
single-source model under all situations (Kustas and 
Norman, 1996; Troufleau et al., 1997; Bastiaanssen 
et al., 1998). In fact, our experience revealed that the 
dual source, SETMI modelling approach required 
more careful model input data parameterization, 
especially with respect to the target area’s land use 
and crop coefficient values, as compared to the 
EEFlux model where the same were completely 
automated thereby decreasing the negative impacts 
of the inferior user skill set  or user-errors on the 
quality of the generated model inputs and thus 
model-reproducibility in terms of its outputs or 
performance. These results were observed to be in 
close conformity with even those obtained by 
French, et al. (2015), Timmermanns, et al. (2007) 
and Liaqat and Choi (2015). Thus, the present study 
strongly recommended the use of single-source 
surface energy balance approach namely EEFlux 
particularly for the arid regions of the developing 
nations, where limited data availability and 
computational resource pose significant challenges.  
 

Conclusion 
Remote sensing-based single and dual-source 
surface energy balance modeling approaches 
represent cutting-edge techniques for 
operationalizing actual evapotranspiration-based 
demand driven irrigation systems. Normally the 
more detailed dual-source surface energy balance 
approaches are assumed to be superior to the simpler 
single-source energy balance modelling approaches. 
However, the present investigation, that was 
primarily aimed at assessing the comparative 
performance efficiency of the single-source, EEFlux 
and the dual-source, SETMI models for estimating 
actual evapotranspiration flux over the Narmada 
Canal Command area of the arid Rajasthan state of 
India, clearly showed that the afore-stated 
assumption need not be universally applicable as in 
the present investigation the test single source model 
namely, EEFlux seemed to be performing at par with 
the dual source, SETMI model. In fact, the present 
study demonstrated distinct advantages of the single 
source EEFlux model over the dual source SETMI 
model due to its user friendly, automated 
implementation and low input data requirements 
thereby making it the most suitable approach for 
particularly the resource crunched and vulnerable 
arid regions of the world having limited input data 
and computational resources.  
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