Antimycotic activity of green tea phytocompounds against *Candida glabrata*

Priyanka Sirari
Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Jigisha Anand
Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Manjusha Tyagi
Department of Microbiology, SGRR University, Dehradun, Uttarakhand, India

Rakesh Kumar Bachheti
Department of Industrial Chemistry, College of Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Ashish Thapliyal
Department of Microbiology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

Nishant Rai
Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India

ARTICLE INFO

<table>
<thead>
<tr>
<th>Received : 06 February 2023</th>
<th>Revised : 05 May 2023</th>
<th>Accepted : 18 May 2023</th>
</tr>
</thead>
</table>

ABSTRACT

One of the medically important opportunistic fungal pathogen for humans is *Candida glabrata* that causes various types of candidiasis. Its environmental adaptations and antimicrobial resistance is now a great concern for public health. In the present study, the green tea phytocompounds; EGCg, Chlorogenic acid, Coumaroyl quinic acid and Rutin trihydrate along with a known antimycotic Fluconazole were studied for their antimycotic activity against *Candida glabrata*. The MIC₉₀ for *C. glabrata* was observed at 125µg/ml for EGC g, 250 µg/ml for Chlorogenic acid, 500µg/ml for Coumaroyl quinic acid and Rutin trihydrate while 12.5µg/ml for Fluconazole in macro dilution assay while the MFC values were 1000 µg/ml for EGC g, 500 µg/ml for Chlorogenic acid, Coumaroyl quinic acid, Rutin trihydrate and 50 µg/ml for Fluconazole. In microdilution assay, the MIC₉₀ for *C. glabrata* was observed 125µg/ml for EGC g and chlorogenic acid, 500µg/ml for Coumaroyl quinic acid, Rutin trihydrate and 12.5µg/ml for Fluconazole while the MFC values were 31.25 µg/ml for Fluconazole, 250 µg/ml for chlorogenic acid and 500 µg/ml for EGC g. Chlorogenic acid was found to be more effective against *C. glabrata* and therefore these two were used for synergistic study along with Fluconazole. The viability of HeLa cells (in per cent) was observed ≥100% green tea phyto compounds. The viability of treated cells (in per cent) with a combination of Green tea, phytocompounds and fluconazole was observed between ≥98± 0.79 to ≥98± 0.87. Green tea phytocompounds mainly EGC g and chlorogenic acid can be used as synergistic molecules having antimycotic activity against *C. glabrata*.

Introduction

Candida albicans causes a high mortality rate of 10%-49% while Non-albicans Candida species including *C. glabrata*, *C. tropicalis*, *C. krusei* and *C. auris* is increasing in India. *C. albicans* is responsible for over 90% of infections, followed by *C. glabrata*, *C. tropicalis*, *C. parapsilosis* and *C. krusei* (Pfaller et al., 2007). According to reports, India has one of the highest incidences of blood stream Candida infections worldwide (Gaffi - Global Action For Fungal Infections). About 35 to 40% of *C. tropicalis* species have been reported from clinical specimens like blood, urine, sputum, pus, lung aspirate, catheter tips, nail, throat swab, tested in patients in north India (Singh et al., 2011;
Patel et al., 2012; Yapar, 2014). Candida glabrata (also now known as Nakaseomyces glabrata) has emerged as a very common bloodstream pathogen and recently it is reported as a widely prevalent pathogen in Asia (Gómez et al., 2023, Sarah et al., 2023). C. glabrata produces systemic fungal infection and its emergence has caused alarm because of its drug resistance and variations/mutations occurring in its genome. C. glabrata is continuously emerging as more serious pathogen for humans because of high-stress resistance and high adhesion characteristics. It has progressed a vigorous tolerance to cationic, oxidative, osmotic and nitrosative stresses. It has a large collection of adhesins, which enable its ability to colonize humans (Chew et al., 2019; Kumar et al., 2019; Pais et al., 2019; Lionakis et al., 2023). In addition, it has very high adaptability and can be found on catheters and inanimate hospital equipment. Particularly in ICU-recommended patients, such as elderly patients with underlying illnesses, candidemia has a significant fatality risk (Ayhanım, 2020) and also detected in Hospitalized Patients with COVID-19 (Cattaneo et al., 2023). As a result, natural chemotherapeutic agents, such as plant extracts, represent a potential source for the creation of strong antifungal drugs and disease management strategies. To lessen side effects and toxicity, combining recognised beneficial medications with phytoconstituents is a great idea (Aboody and Mickymaray, 2020).

The present study has evaluated the anticanidial activity of green tea phytoconstituents viz. EGCg, Chlorogenic acid, Coumaroylquinic acid and Rutin trihydrate along with a known antimycotic Fluconazole against Candida glabrata.

Material and Methods

Green tea phytoconstituents

A purified form of (−)Epigallocatechin gallate (EGCg), Chlorogenic Acid, Coumaroylquinic Acid, Rutin trihydrate were procured from Sigma Aldrich and SRL.

Yeast strains

Candida glabrata (MTCC 3019) was procured from MTCC, IMTech, Chandigarh and employed for assessing the potential of Green Tea for anticanidial activity. It was grown and preserved in Yeast Peptone Dextrose (YPD) agar and broth.

Broth Macro-dilution assay

Two-fold dilution of EGCG, chlorogenic acid, Coumaroylquinic acid, and rutin trihydrate was prepared from 1000 µg/ml to 31.25 µg/ml and Fluconazole from 100 µg/ml to 3.125 µg/ml in YPD broth.

C. glabrata culture was cultured in YPD broth at 37°C for 18 hr. Each diluted samples were inoculated with 1x10³ CFU of *C. glabrata*. The controls taken were YPD broth only, YPD broth with *C. glabrata*, 10% DMSO as a negative control. These were incubated at 37°C for 18h after which two-fold dilutions of each sample were made and poured on YPD agar plates, incubated at 37°C, colonies were counted and CFU/ml was calculated.

Minimum inhibitory concentration (MIC) was calculated as the concentration which inhibited 90% growth of *C. glabrata*. Minimal fungicidal activity (MFC) was calculated as the lowest concentration which resulted in 99.9% death of cultures. For this 100µl of the test sample with culture was poured on YPD agar plates, incubated at 37°C and CFU/ml was calculated (Kaya and Ozbilge, 2012).

Broth micro-dilution assay

The MIC of EGCg, Chlorogenic acid, Coumaroylquinic acid, Rutin trihydrate and Fluconazole were assessed following the micro dilution method (CLSI, 2002). The *C. glabrata* culture was pre-incubated in broth at 37°C for 18hr at 150rpm. Two-fold dilutions of EGCg, Chlorogenic acid, Coumaroylquinic acid, Rutin trihydrate was prepared as described above and 100µl of each sample was added into wells microtitre plate (Axygen, USA) followed by inoculation with 5µl of *C. glabrata* (1x10⁵CFU) with gentle plate shaking. The 10% DMSO was taken as negative control and YPD broth in wells as blank. The microtitre plate was incubated at 37°C for 18hr and MIC was calculated by recording the absorbance at 600nm (Radji et al., 2013).

Assay of synergistic activity

The inhibitory effects of each GT phytoconstituents with fluconazole combinations were evaluated using micro dilution checker board technique (CLSI, 2002). Fluconazole and GT phytoconstituents were
produced and employed in several combinations at 2-fold serial dilutions that were equivalent to, below, and above their MICs for *C. glabrata*. The effective MIC was considered for the combination that completely inhibited the growth of *C. glabrata* (Jin et al., 2010). The growth was quantified using spectrophotometer and then analysed for fractional inhibitory concentration index (FICI). The drugs combination that inhibited the growth completely was considered as an effective MIC for the combination. Fractional inhibitory concentration index (FICI) was evaluated using standard formula; FICI = FIC A + FIC B, where, FIC A = MIC of the combination A and B /MIC of drug A alone; FIC B = MIC of the combination A and B / MIC of drug B alone. The effects of the combinations were classified as synergistic if the FIC index was equal to 1, indifferent if it was between 1 and 4, and antagonistic if it was greater than 4.

In vitro cytotoxicity

The HeLa cell line procured from NCCS, Pune was cultured in 25cm² culture flasks having DMEM media with 10% FBS, Gentamycin (5µg/ml) in an incubator with 5% CO₂ tension at 37°C until confluent and was used in cytotoxicity study by MTT assay. The HeLa monolayer was trypsinized with TVS before cells were planted into each well of the microtitre plate at a density of 1x 10⁵ cells/ml. Two-fold dilutions of GT phytocompounds and fluconazole as described above were prepared in DMEM. 100µl of various test concentrations were added into the partial monolayer in 96-well plates and incubated at 37°C for 24 hr. The cells are examined under microscope at 0 and 24hrs. Wells with no media added are used as controls, along with untreated cells. As a positive control, H₂O₂ was employed, and as a negative control, 10% DMSO. After 24 hr, the solutions were discarded. 20µl of MTT (5mg/ml) was incorporated to wells and kept for 4hr at 37°C in a 5% CO₂ atmosphere. 100µl of 0.04N HCl was added to solubilise the formazan. The absorbance was recorded at 540 nm. The percentage viability was calculated as: Percentage viability (%) = [(At-Ab) / (Ac-Ab)] X 100; where, At is Absorbance of treated wells, Ab is Absorbance of blank, Ac is Absorbance of control wells. Lethal Concentration 50 percent was defined as the lowest concentration of the GT phytocompounds that caused a 50% reduction of cell development (LC50) (Fadeyi et al., 2013).

Results and Discussion

Antimycotic effect of green tea using broth macrodilution assay

The MIC₉₀ for *C. glabrata* was observed at 125µg/ml for EGCg, 250 µg/ml for Chlorogenic acid, 500µg/ml for Coumaroylquinic acid and Rutin trihydrate while 12.5µg/ml for Fluconazole (Table 1). The MFC values were 1000 µg/ml for EGCg, 500 µg/ml for Chlorogenic acid, Coumaroylquinic acid, Rutin trihydrate and 50 µg/ml for Fluconazole.

<table>
<thead>
<tr>
<th>GT Phytocompounds</th>
<th>MIC₉₀(µg/ml)</th>
<th>MFC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCg</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Coumaroylquinic acid</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Rutin trihydrate</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>12.5</td>
<td>50</td>
</tr>
</tbody>
</table>

Antimycotic effect of green tea using broth microdilution assay

The MIC₉₀ for *C. glabrata* was observed 125µg/ml for EGCg and chlorogenic acid, 500µg/ml for Coumaroylquinic acid, Rutin trihydrate and 12.5µg/ml for Fluconazole. The MFC values were 31.25 µg/ml for Fluconazole, 250 µg/ml for chlorogenic acid and 500 µg/ml for EGCg, Coumaroylquinic acid and Rutin trihydrate (Table 2).

<table>
<thead>
<tr>
<th>GT Phytocompounds</th>
<th>MIC₉₀(µg/ml)</th>
<th>MFC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCg</td>
<td>125</td>
<td>500</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>Coumaroylquinic acid</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Rutin trihydrate</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>12.5</td>
<td>31.25</td>
</tr>
</tbody>
</table>

Synergistic activity by Checkerboard susceptibility assay

In macrodilution and microdilution assays, it was found that EGCg and Chlorogenic acid gave better results and found more effective and therefore these two were used for synergistic study along with Fluconazole. The results obtained are shown in
Table 3. On HeLa cell lines, the cytotoxicity experiment for various mixtures of GT phytocompounds and fluconazole was carried out. When HeLa cells were exposed to GT Phytocompounds alone at concentrations ranging from 15.625 g/ml to 500 g/ml, they displayed growth viability in a dose-dependent manner. HeLa cells' vitality was observed to be 100 percent. (table 4). At 0 hours and 24 hours of incubation, the cells were seen to be stable and in good condition. When cells were treated with a mixture of GT phytocompounds and antimycotics, the % viability was assessed, and results ranged from 98 to 98.87. (Table 4). Additionally, the cytotoxicity of pure catechins on HeLa cells was assessed; the results revealed an increase in cell viability after 24 hours of incubation (Fig.1 to 4). The percentage vitality of HeLa cells treated with GT Phytocompounds and fluconazole was evaluated at 0 hours and 24 hours following treatment. HeLa cell viability was measured as a percentage and ranged from 98.7 to 99.8.

Table 3: Synergistic activity of green tea phytocompounds and fluconazole by checkerboard antimycotic susceptibility assay for *C. glabrata*

<table>
<thead>
<tr>
<th>GT Phytocompounds (µg/ml)</th>
<th>MIC<sub>90</sub></th>
<th>FICI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCg + Chlorogenic acid (62.5 each)</td>
<td>62.5</td>
<td>2.5 (l)</td>
</tr>
<tr>
<td>EGCg + Fluconazole (15.625/12.5)</td>
<td>15.625</td>
<td>0.5 (S)</td>
</tr>
<tr>
<td>Chlorogenic acid + Fluconazole (15.625/12.5)</td>
<td>15.625</td>
<td>0.5 (S)</td>
</tr>
</tbody>
</table>

Table 4: Assay of the viability of HeLa cells treated with the combination of GT Phytocompounds with antimycotics after 24 hr of incubation

<table>
<thead>
<tr>
<th>GT phytocompounds (µg/ml)</th>
<th>% Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGCg + Chlorogenic acid (62.5/62.5)</td>
<td>>98±0.79</td>
</tr>
<tr>
<td>EGCg + Fluconazole (15.625/12.5)</td>
<td>>98±0.87</td>
</tr>
<tr>
<td>Chlorogenic acid + Fluconazole</td>
<td>>99.8±0.19</td>
</tr>
<tr>
<td>Healthy HeLa cells</td>
<td>≥ 100</td>
</tr>
</tbody>
</table>

The green tea is known for its active phytocompounds with multiple benefits including antimicrobial properties (Anand, 2012, Sirari et al., 2021). In the present investigation effective antifungal synergistic activity of green tea compounds in combinations is evaluated (Hirasawa et al., 2004, Behbehani et al., 2019, Kane et al., 2022). In macrodilution assay, the MIC₉₀ for *C. glabrata* was observed at 125µg/ml for EGCg, 250
µg/ml for Chlorogenic acid, 500µg/ml for Coumaroylquinic acid and Rutin trihydrate while 12.5µg/ml for Fluconazole. The MFC values were 1000 µg/ml for EGCg, 500 µg/ml for Chlorogenic acid, Coumaroylquinic acid, Rutin trihydrate and 50 µg/ml for Fluconazole. Using microdilution, the MIC₉₀ for C. glabrata was observed 125µg/ml for EGCg and chlorogenic acid, 500µg/ml for Coumaroylquinic acid, Rutin trihydrate and 12.5µg/ml for Fluconazole. The MFC values were 31.25µg/ml for Fluconazole, 250 µg/ml for chlorogenic acid and 500 µg/ml for EGCg, Coumaroylquinic acid and Rutin trihydrate. In macrodilution and microdilution assays, it was found that EGCg and Chlorogenic acid gave encouraging results and therefore these two were used for synergistic study along with Fluconazole. The interaction between an antibiotic and GT depends on a number of variables, including the type of bacteria involved (Haghjoo et al., 2013). In the present study, percentage viability of HeLa cells was observed between ≥98± 0.79 to ≥ 99.8± 0.19 alone at concentrations ranging from 31.25µg/ml to 500µg/ml. The percentage viability of HeLa cells was reported to be >100%. HeLa cells were used to test the cytotoxicity of GT phytocompounds; the results revealed an increase in cell viability after 24 hours of treatment. The synergistic inhibition of a combination of fluconazole and cyclosporine was studied against Candida albicans based on checkerboard assay and no significant change in MIC of fluconazole was seen (Marchetti et al., 2000). However, in the present study the MIC of fluconazole decreased to half when combined with GT Phytocompounds.

Conclusion
The green tea phytocompounds EGCg, Chlorogenic acid, Coumaroylquinic acid and Rutin trihydrate along with a known antimycotic Fluconazole were studied for their antimycotic activity against C. glabrata. It was found that these showed antimycotic activity against C. glabrata. EGCg and chlorogenic acid showed enhanced activity against C. glabrata. Their combination with fluconazole also showed enhanced activity. Therefore, it is evident that green tea phytocompounds mainly EGCg and chlorogenic acid can be used as synergistic molecules having antimycotic activity against C. glabrata.

Acknowledgement
We are thankful to the Department of Biotechnology, Graphic Era Deemed to be University and TGTRI, Dehradun for providing technical support for this study.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Publisher’s Note: ASEA remains neutral with regard to jurisdictional claims in published maps and figures.