Screening of *Brassica* genotypes against mustard aphid under northern Indian Shivalik hill conditions

Sunidhi Tiwari
Division of Plant Breeding & Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology, FOA, Main campus, Chatha, Jammu (J&K), India

S. K. Gupta
Division of Plant Breeding & Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology, FOA, Main campus, Chatha, Jammu (J&K), India

R.G. Upadhyay
College of Basic Sciences, CSK HPKV, Palampur (H.P.), India

Harpreet Singh
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana (Punjab)

Om Prakash Yadav
Department of Genetics & Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana

Mukesh Kumar Pandey
Division of Plant Breeding & Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology, FOA, Main campus, Chatha, Jammu (J&K), India

ARTICLE INFO

<table>
<thead>
<tr>
<th>Received</th>
<th>14 October 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised</td>
<td>27 November 2022</td>
</tr>
<tr>
<td>Accepted</td>
<td>05 December 2022</td>
</tr>
<tr>
<td>Available online</td>
<td>09 March 2023</td>
</tr>
</tbody>
</table>

Key Words:
- *Lipaphis erysimi*
- Resistant
- Tolerant
- Susceptible
- Infestation index

ABSTRACT

Oilseed Brassica plays the important role in Indian agriculture in relation to oil production. The major insects in *Brassicas* are *Lipaphis erysimi*, *Bagrada hilaris*, *Athalia lugens proxima* (Klug), *Chromatomyia horticola* Goureau, *Pieris rapae*, *Bagrada cruciferarum* Kirkaldy are of practical importance. Out of these, the *Lipaphis erysimi* (Kalt.) [mustard aphid], a part of family Aphididae with order Hemiptera leads to great yield losses in rapeseed-mustard. To overcome this problem, the easiest solution is to grow resistant and tolerant varieties. The screening is done on the basis of aphid infestation index scale for categorization of the genotypes into resistance and tolerance. Experiments were carried out at the experimental farm of Division of Plant Breeding and Genetics, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu during rabi of 2017–18 and 2018–19 to evaluate mustard germplasm against *Lipaphis erysimi* and selecting the resistant genotypes of *Brassica* for its cultivation and expansion purposes. A total of fifteen cultivars were evaluated based on population buildup of mustard aphid and infestation index. The genotypes RSPN-28, CNH-11-13, RL-1359, HNS-1101, GSC-101, CNH-11-2 and HNS-1102 were found moderately resistant during the rabi 2017–2018 and during rabi 2018–2019, due to weather conditions only two genotypes CNH-13-2 and RSPN-29 were found moderately resistant and susceptible against aphid infestation.

Introduction

Brassica belongs to tribe Brassicaceae (El-Esawi, 2016) is the important genus consisting of 238 genera and 3709 species (Poveda et al., 2020) varied in respect of morphological as well as in genetical ways (Illardi et al., 2020). They are known to be vegetable, fodder, oil, green manure as well as spice plants (Witzel et al., 2021). This genus has 6 interrelated species. Out of six, three are diploid species namely, *Brassica nigra* (2n=16), *Brassica oleracea* (2n=18) and *Brassica rapa* (2n=20) and three are amphidiploid species namely, *Brassica carinata* (2n=34), *Brassica juncea* (2n=36) and *Brassica napus* (2n=38) (Sanlier et al., 2018). The ‘U’ triangle defines the relationship among *Brassica*...
species (Zhang et al., 2022). The allopolyploid
Brassica napus (2n = 4x = 38, AACC) is the third
most (Javed et al., 2022) desirable oil crop in world
comes after maize and oil palm obtained from
interspecific hybridization between two species such
as Brassica rapa having 2n=2x= 20, AA
and Brassica oleracea having 2n = 2x = 18, CC (Lu
et al., 2019).
For oilseed brassica, India holds the second-place
area wise and third place production wise in world
and rapeseed-mustard produces 72.37 million tonnes
from a stretch of 33.64 m ha (Anonymous, 2021). In
India, Rapeseed-mustard is cultivated over an area
of 6.23 m ha with production of 9.33 mt and
productivity of 15 q/ha during 2018–19
(Anonymous, 2020). Each part of rapeseed such as
seeds, flower, leaves, stem and root are useful for
cosmetics, food, remedies and has other industrial
applications. Especially the most useful part is the
seed part because of its application for oil and
protein source (Raboanatihiry et al., 2021).
The oil taken out from Brassica napus L. is high in
quality wise (Hyder et al., 2021) and rich in terms
of fatty acid profiling (Tiwari et al., 2021). It is,
therefore, subjected to various biotic as well as
abiotic stresses, which brings down its productivity
remarkably (Mahapatra et al., 2022). Keeping in
view the growing demands of oils, every attempt is
being put together for increasing the crop yield by
adopting the modern agricultural practices, namely,
utilization of high yielding varieties, heavy
manuring and proper irrigation but these
collaborated efforts are in vain if crop is not
sheltered from the disastrous effect of insect-pests.
The damage due to insect pest is one among the
various major biotic factors leads to low productivity
(Das et al., 2022). There are > 3 dozens of insect-
pests are to be known in India in case of rapeseed
mustard crop (Bakhetia and Sekhon, 1989) and
among them the most disastrous is mustard aphid
which however, solely prove as one of the limiting
factors in the mustard production (Kumar et al.,
2022).
Mustard aphid is a sucking pest and is the most
destructive pest of brassica causing over 50 % yield
loss (Fenning et al., 2020) by excessive phloem sap
diversion (Duhlian et al., 2020). Especially, in case
of rapeseed-mustard, it has occurred as the most
atrocious insect-pest in the regions such as tropical
and subtropical including India (Koramutla et al.,
2016). This pest brings damage to plants by covering
the entire flower bud, shoot and pod surface (Raj et
al., 2017) at various stages such as vegetative,
flowering, and also in pod formation stage
(Taghizadeh, 2019). Commonly, sucking pest
relatively become severe from the seedling stage. At
time of heavy infestation, it causes the crop yield
reduction to a large extent (Prasad and Ashwini,
2021). These aphids quantitatively and qualitatively
affect plant production and processing through sap
sucking, toxin injection and transmission of viruses
from the Luteoviridae family, leading to leaf curling,
shriveling and yellowing (Fidelis et al., 2018). The
attack is extreme in those areas where the cloudy
days are more in numbers throughout the pest
activity period. In boosting the mustard aphid
multiplication, environment makes the major
contribution and out of these environmental
parameters, rainfall, temperature and relative
humidity have the major effect on the mustard
aphid’s survival and its multiplication (Kumar et al.,
2000). Therefore, in present investigation, fifteen
genotypes of Brassica napus were screened to detect
the early tolerant varieties.

Material and Methods
Fifteen genotypes of Brassica napus mentioned
(Table 1) were seeded at the experimental farm of
Department of Plant Breeding and Genetics, Faculty
of Agriculture, Sher-e-Kashmir University of
Agricultural Sciences and Technology, Jammu
during the year 2017-18 and 2018-2019 with latitude
32°40 N and longitude 78°48 E. The experiment was
remained for the causing the infestation of insects
naturally and prevalence of aphid attack and for
assuring their normal population growth, no
insecticide was being used in contrary to the insect
pests during the time. The first recording of mustard
aphid was done after 50 days of sowing and
subsequent data related to aphid population was
taken on weekly basis, beginning from first
incidence of pest and pursued up to the infestation
come to an end (from February first week to March
first week). Data of the aphid population was taken
from randomly selected five plants in every
replication on scale given by Bakhetia and Sandhu
(Table 2). The observation of aphid population on
each plant was done from 10 cm last shoot. By
observing the aphids in every replication visually, population counts were being made on per plant basis by observing the number of aphids on different part of plant such as stem, leaves and inflorescence. Mean values was then calculated from the collected data to make the aphid population estimation based on per plant basis.

Aphid index was calculated by the following formula:

\[
\text{Aphid Infestation Index} = \frac{a \times 1 + b \times 2 + c \times 3 + d \times 4 + e \times 5 + f \times 6}{a + b + c + d + e + f}
\]

Where a, b, c, d, e and f are the frequencies of the plants come under each grade from 0–5.

All the genotypes were categorized into different groups based on the aphid infestation index as mentioned in the table 3.

Table 1: List of Genotypes

<table>
<thead>
<tr>
<th>SN</th>
<th>Genotypes</th>
<th>SN</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RSPN-29</td>
<td>9</td>
<td>CNH-11-2</td>
</tr>
<tr>
<td>2</td>
<td>RSPN-28</td>
<td>10</td>
<td>GSC-6</td>
</tr>
<tr>
<td>3</td>
<td>DGS-1</td>
<td>11</td>
<td>EC552608</td>
</tr>
<tr>
<td>4</td>
<td>RSPN-25</td>
<td>12</td>
<td>CNH-13-2</td>
</tr>
<tr>
<td>5</td>
<td>CNH-11-7</td>
<td>13</td>
<td>HNS-1102</td>
</tr>
<tr>
<td>6</td>
<td>CNH-11-13</td>
<td>14</td>
<td>RL-1359</td>
</tr>
<tr>
<td>7</td>
<td>GSL-1</td>
<td>15</td>
<td>HNS-1101</td>
</tr>
<tr>
<td>8</td>
<td>GSC-101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Screening of genotypes for aphid resistance by using the method of Bakhetia and Sandhu (1973)

<table>
<thead>
<tr>
<th>Score</th>
<th>Injury symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Free from aphid infestation.</td>
</tr>
<tr>
<td>1</td>
<td>Normal growth, no yellowing or curling of leaves, a few aphids without injury symptoms, flowering and pod setting almost normal.</td>
</tr>
<tr>
<td>2</td>
<td>Average growth, flowering and pod setting; curling and yellowing of few leaves.</td>
</tr>
<tr>
<td>3</td>
<td>Curling and yellowing of some branches, below average growth, poor flowering, with very little pod setting.</td>
</tr>
<tr>
<td>4</td>
<td>Very poor growth, heavy curling of leaves, stunting of plants, a little or no flowering and pod formation.</td>
</tr>
<tr>
<td>5</td>
<td>Heavy aphid colonies, severe stunting of plants, curling and yellowing of almost all leaves. No flowering and pod formation. Plants full of aphids.</td>
</tr>
</tbody>
</table>

Table 3: Categorization of genotypes on the basis of aphid infestation index:

<table>
<thead>
<tr>
<th>Aphid Infestation Index</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1.0</td>
<td>Highly resistant</td>
</tr>
<tr>
<td>1.1-2.0</td>
<td>Resistant</td>
</tr>
<tr>
<td>2.1-3.0</td>
<td>Moderately Resistant</td>
</tr>
<tr>
<td>Above 3</td>
<td>Susceptible</td>
</tr>
</tbody>
</table>

Results and Discussion

One of the most limiting factors in the rapeseed and mustard productivity is the losses brings by *Lipaphis erysimi* Kalt (mustard aphid) covering an extent of nearly 93% (Gupta *et al.*, 2003). At times of the heavy infestation of *Lipaphis erysimi* causes the seed yield loss and reduction in oil content in mustard plants (Naga *et al.*, 2022). The temperature is a crucial factor which affects directly the insect development, its reproduction and its survival. As the individual insect’s behavior differs with climate change (increase in temperature), the prediction of the influence of global warming on insect plant interaction occur for enlarging the herbivore pressure intensity on plants (Dhaliwal, 2002).

The aphid infestation index ranged from 2.4 to 3.3 during the year 2017–2018 (Table 4). None of the genotypes was found to be resistant against aphids. However, few genotypes viz., RSPN-29, RSPN-28, CNH-11-7, RL-1359, HNS-1101, GSC-101, CNH-11-13, HNS-1102 were found moderately resistant to aphids in the year 2017-18. The observations recorded during the year 2018-2019, only two genotypes namely, RSPN-29 and CNH-13-2 showed susceptible and moderately resistant reaction to aphid respectively and no aphid infestation was found on rest of the genotypes under study (Table 5). Favorable prevailing temperature as well as the relative humidity leads to the population buildup and aphid development and in turn, increase the aphid population. The prevalence of the *L. erysimi*, its growth and its multiplication are mainly affected by meteorological parameters such as temperature rainfall, relative humidity. During rabi 2017-2018, crop was sown on 20th and 30th October. The low temperature (10.2 to 19.6°C) and high relative humidity (56 to 88.2%) at vegetative as well as silique formation stages, favored aphid multiplication. During rabi 2018–2019, population...
dynamics of _L. erysimi_ was observed on mustard from 18th November 2018 to 19th April 2019. During this period the temperature fluctuated from 10.1 to 25.6 °C with relative humidity 63% on November 18th 2018. This increase of temperature and decrease in relative humidity continued till Feb 2019. At 19th March 2019 (siliqua formation stage), the temperature fluctuated between 5.2 to 17.4 with relative humidity 78% and on 19th April 2019, the temperature ranged between 8.1 to 19.5 with relative humidity 42.4%. Therefore, this leads to declining of aphids during _rabi_ 2018–2019. Hence, at vegetative stage the high temperature (25.6 to 26.6°C) and low relative humidity (52 to 63) and at siliqua formation, low temperature (17.4 to 19.5°C) and high relative humidity (78 to 87%) might have helped these cultivars to break out from the severe attack of aphid and results in the development of healthy crops. Only two genotypes CNH-13-2 and RSPN-29 showed the aphid infestation (Table 5). These results are similar with Srivastava _et al._, 1995, Prasad, 2003 and Ali _et al._, 2011. By the results of the present study, identification of resistant as well as tolerant varieties to mustard aphid can be done by screening the rapeseed-mustard and can be used for the future endeavors.

Mustard aphid poses a serious threat to mustard cultivation and is a devastating pest of Brassica. There are over more than 200 different aphids type which are trouble-making for farmers and cause trouble by feeding on crops and also by infecting the plants with various diseases as well as viruses. Aphids can make colonies on the underside of leaves and also on growing tips. Aphid grow so fast that if get proper food supply, develops wings and fly and infects other plants. So the eco-friendly way for controlling the aphid infestation in Brassica is the application of resistance cultivars. Therefore, the screening of Brassica genotypes is the important aspect for finding the resistant and susceptible cultivars. The present study made by author are in conformity with the Jat _et al._, 2007 and Yadav _et al._, 2017 in which 240 mustard accessions were screened and 16 out of them were found resistant and 88 were found moderately resistant and remaining 102 were found susceptible and 39 were highly susceptible. Another study done by Chaudhary and Patel, 2016 revealed that three varieties namely, NRCM 120, NRCM 353 and Rayad 9602 found to be highly resistant with lowest aphid infestation index and one variety found resistant namely, Vardan and four varieties (GM-2, HYOLA-401, GM-3 and GM-1) found to be susceptible and highly susceptible. Other studies given by Pawar _et al._, 2009 and Sanwar _et al._, 2013 are also in support of the present study.

Conclusion

The mustard aphid leads to 97% yield losses in rapeseed- mustard. Pesticides application is not effective and deleterious as far the insecticide resistance is concerned. Germplasm screening is done to analyze the best germplasm for the

<table>
<thead>
<tr>
<th>Year</th>
<th>2017–2018</th>
<th>2018–2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>None of the genotypes</td>
<td>All these genotypes escaped aphid infestation</td>
</tr>
<tr>
<td>Resistant</td>
<td>None of the genotypes</td>
<td>None of the genotypes</td>
</tr>
<tr>
<td>Susceptible</td>
<td>DGS-1, RSPN-25, CNH-13-2, EC552608, GSC-6,</td>
<td>RSPN-29</td>
</tr>
</tbody>
</table>

Table 4: Screening of Aphids based on Aphid Infestation Index.

<table>
<thead>
<tr>
<th>Year</th>
<th>2017–2018</th>
<th>2018–2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSPN-29</td>
<td>2.6</td>
<td>4.25</td>
</tr>
<tr>
<td>RSPN-28</td>
<td>2.7</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>DGS-1</td>
<td>3.2</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>RSPN-25</td>
<td>3.3</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>CNH 11-7</td>
<td>2.5</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>CNH 11-13</td>
<td>2.4</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>CNH 13-2</td>
<td>3.1</td>
<td>2.65</td>
</tr>
<tr>
<td>EC552608</td>
<td>3.2</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>GSC-6</td>
<td>3.2</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>RL1359</td>
<td>2.7</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>HNS-1101</td>
<td>2.7</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>GSC-101</td>
<td>3.0</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>CNH 11-2</td>
<td>2.7</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>GSI-1</td>
<td>3.2</td>
<td>No infestation observed</td>
</tr>
<tr>
<td>HNS-1102</td>
<td>2.6</td>
<td>No infestation observed</td>
</tr>
</tbody>
</table>

Table 5: Categorization of genotypes based on Aphid Infestation Index.
development of tolerant or resistant varieties and for developing integrated pest management (IPM) program in oleiferous brassica crops, a good knowledge of insect pest and its interactions with plants is an important requirement. And for growers, the utilization of host plant resistance is the most useful, desirable, economical and practical method, with the assumption to be an efficient control element in IPM (insect pest management).

Conflict of interest
The authors declare that they have no conflict of interest.

References

Publisher's Note: ASEA remains neutral with regard to jurisdictional claims in published maps and figures.