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Land use/land cover (LULC) changes influence the ecological function, 
consequence on ecosystem services, which are tightly linked to human 
wellbeing. However, quantification of the LULC changes and identifying the 
underlying factors remain patchy particularly in developing nations, despite 
this information is crucial to propose a feasible restoration action. Therefore, 
this study investigates the land use/land cover changes and its drivers in central 
Rift Valley, Ethiopia. GIS and Remote sensors i.e. Landsat 5 (TM), and Landsat 
8 (OLI/TIRs) imagery sensors acquired from USGS, and field observation were 
used. Using the supervised classification method and the support of ArcGIS 
10.5 and ERDAS IMAGINE 2014, all images were classified into various land 
cover types. Focus group discussions, key informant interviews, and structured 
questionnaire surveys were used to investigate the drivers of LULC change. 
NDVI was used to detect the vegetation cover change. Woodland, grassland, 
and barren lands were the major LULC types identified in this study. After 28 
years, the woodland cover increased from 20.6% to 40.2% whereas the barren 
land decreased from 43.4% to 22.6%. Grassland showed very slight increment, 
i.e. from 35.9% to 36.9%. This implies that area enclosure plays a significant 
role in the restoration of degraded lands. The highest NDVI values (0.6) were 
determined in the year 2022 at the end of the classification. Focus group 
discussants and key informants confirmed that human-induced factors were 
the major drivers of LULC changes in the study area. Our findings indicated 
that human interventions are the key determinants of land use/land cover 
dynamics, and as a result, enforcement of the law and public education 
campaigns to change human behavior in support of the area enclosure 
approach are essential to restoring degraded land for the benefit and wellbeing 
of humans and nature while also advancing the achievement of the global goals. 

Introduction 
Changes in land use and land cover are very 
complicated processes that are greatly influenced by 
a variety of factors, including long-term natural 
climate changes, geomorphological and biological 
processes, and human-induced pressures on 
vegetation cover (Arsanjani, 2011; Gebrehiwot et 
al., 2021). LULC changes have influenced the 

ecological conditions of the ecosystem (Yesuph & 
Dagnew, 2019). Consequently, it strongly affects 
ecosystem services and functioning (Wang et al., 
2015). In many semi-arid areas of sub-Saharan 
Africa, land degradation is a problem that needs to 
be addressed if it is to be restored (Emiru et al., 2018; 
Yayneshet, 2011). Degradation of vegetation 
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leading to eventually desertification is more 
pronounced in Africa than in any other continent 
(Mekuria et al., 2019; Zeila & Jama, 2005). The 
same is true in Ethiopia (Gebreselassie et al., 2016). 
Earlier studies (Gebrehiwot et al., 2021; Kidane et 
al., 2012) showed that population growth and 
settlement, agricultural expansion, deforestation, 
land clearing, and fire are the main causes of LULC 
change. Hence, (Feyisa et al., 2017; Tesfaye et al., 
2016; Tsegay & Meng, 2021) argue that the use of 
area enclosure restoration practice is an effective 
strategy to reduce the degradation problem.The 
knowledge of temporal and spatial LULC change is 
crucial to understanding the current status of 
vegetation resources (Mohammed et al., 2020) and 
predicting the consequences of vegetation 
degradation (Emiru et al., 2018) which enables the 
development of other supportive applicable 
conservation strategies or enhances and improves 
conservation practice for further output. To plan 
locality-specific sustainable land use and resource 
management techniques in such area enclosures, 
precise and current spatiotemporal information on 
LULC dynamics, the underlying causes, and 
consequences of these changes are urgently 
required. The study area, Bilate watershed, is well 
experienced to be restored by area enclosure 
activities, but the area is still exposed to severe 
erosion and soil loss triggered by LULC changes. 
Therefore, it is essential to have a thorough 
understanding of the divers, consequences, and extent 
of LULC change to establish more appropriate 
environmental policies and land management 
strategies for the area and beyond. (Larjavaara & 
Muller-Landau, 2010). The degree of this change, its 
causes, and its effects are not fully understood because 
the LULC change in the Bilat watershed has not yet 
been fully examined. Therefore, the objective of this 
study was to detect, quantify, and map LULC dynamics 
and trends as well as to investigate the underlying 
causes of the LULC change. 
 
Material and Methods 
The study was carried out in the Central Ethiopian 
Rift Valley's Bilate Watershed. It covers 2032.11 ha. 
Three zones, i.e. Halaba, Kambata Temabaro, and 
Hadiya make up the Bilate watershed. One district 
was selected from each zone because of the presence 
of area enclosures and the adjacent open land. We 

selected Weyera district from Halaba zone. Six 
Kebeles (smallest administrative units: Sheke Tena 
Woldia, Wanjana Woldia, Asore, Ashoka, Houlgeb 
kuke, Chambula) were identified from this district, 
Kedida Gamela district was selected from Kambata 
Tembaro zone with Hulegabezeto kebele. Misraq 
Badawacho district was selected from Hadyia zone, 
and the kebele identified was 2nd Keraniso. The 
watershed is located between the latitudes of 
7°12′33′′ and 7°21′19′′ and the longitudes of 
38°06′00′′ and 38°03′57′′. The area features plain, 
sloppy, or undulating landscape types and an altitude 
range of 1654 to 1822 masl (Figure 1). 
 

 
Figure 1: Map of the study area 
 
The Ethiopian Rift, part of the Great Rift Valley's 
active rift system and characteristic of the area's 
warm climate with a width of roughly 1000 km, 
dominates the study area's geological formation 
(Wodaje, 2017). The soil types in the study area are 
Chromic, orthic Luvsols, and Eutric Nitisols, which 
have good potential for agricultural activities 
(Wodaje, 2017). The Eutric Nitosols is the most 
renounced for their fertility. Ca., 80% of the soil is 
sandy loam, 15% is clay and 5% is sandy (Food et 
al., 2003) in the study area. The long-term average 
rainfall in the watershed is approximately 1107 mm, 
and it has a bimodal pattern with Belg (a traditional 
division of the year with light rain) typically 
occurring from March to May and Meher (a 
traditional division of the year with heavy rain) 
typically occurring from June to September. In the 
research area, the annual average temperature is 
26.2 °C.In general, there are two types of LULC in 
the study area right now: vegetation (trees, shrubs, 
grass, and herbs), and bare land. Natural and 
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plantation forests are also present in the study area's 
vegetation cover, while areas of bare ground are 
covered by degraded grasslands and scattered rural 
settlements. 
Data collection  
To examine the LULC, path and raw satellite images 
of 1994, 2008, and 2022 years were used. Field 
observation and GPS point data (training sites and 
ground control points) were used within the study 
area. To understand the reality and the forces driving 
change and perceptions related to LULC changes, 
socioeconomic data were used to gather additional 
ancillary data from the elders, local community, and 
local administration through a set of questionnaires, 
interviews with key informants, and discussions in 
focus groups. 
Sample size determination 
The (Cochran, 1977) formula was used to determine 
the sample size for the household survey. 
 

𝒏 =
𝒁𝟐𝒑𝒒

𝒆
 

(1) 
 

 
Where: n= sample size; Z2= confidence interval (1.96, 
constant); p = population percentage (0.5, constant); q = 1 - p; 
e=margin of error which is fixed at 0.05. An error margin of 5% 
and a confidence interval of 95% were used.  
 
The calculated sample size was 384 and the sample 
size for each kebele was allocated proportionally 
(Table 1). The respondents were selected using a 
simple random sampling technique. 
 
Table 1: Target population and sample size of each study 
kebele in the Bilate watershed 

 
SN 

Kebele Name Household  
Male Female Total Sample 

Size 

1 Sheke Tena Woldia 197 87 284 37 

2 Wanjana Woldia 258 198 456 59 

3 Ashoka 312 98 410 53 

4 Asore  243 103 346 45 

5 Houlgeb kuke  189 110 299 39 

6 Chambula 186 79 265 34 

7 Hulegabezeto kebele 396 172 568 73 

8 2nd Keraniso kebele 257 91 348 45 

 Total  2038 938 2976 384 

 
We used three primary sources to collect information 
on the factors driving LULC change and the 

historical background of the watershed : semi-
structured household questionnaire  focus groups, 
and key informant interviews. Eight focus group 
discussions (one group for each kebele) were held 
using checklists to generate more evidence on the 
selected topics.Four to ten discussants were included 
in each group. Village administrators, development 
experts of natural resources, male households, and 
female households participated in the FGD. Twenty-
four key informants (three in each kebele) were 
selected purposively with the help of the local 
administration and agricultural development experts 
to gain in-depth information about the study area. 
The key informants, who were people who had lived 
in the area for more than three decades and were 
assumed to have essential knowledge about their 
area, were given a list of open-ended questions. 
Data acquisition  
To assess the LULC variations of the research area, 
images from Landsat 5 TM and Landsat 8 OLI/TIRS 
of three carefully chosen years of the previous 28 
years (1994, 2008, and 2022) were obtained from the 
USGS Earth Explorer website 
(http://earthexplorer.usgs.gov) (Table 2). Data 
acquisition from January to March as cloud 
effect/clear sky during data acquisition. The year 
1994 was selected as the reference year of a baseline 
because it represents the pre-restoration period, and 
2008 represents the period of the green legacy 
movement of the Ethiopian millennium. It was a year 
when enclosures activities were widely carried out in 
the study area. After the images were downloaded, 
projected, and stacked (pre-processed) to be 
displayed in the ERDAS IMAGINE software 
interface, the land cover map was generated within 
the framework of the Geographic Information 
System (GIS) and Remote Sensing (RS) 
Environment. The acquired multi-temporal satellite 
image covers a large area with a sensor spatial 
resolution of 30 meters for all spectral bands except 
band six (thermal band), which has a resolution of 
60 meters, and band 8, which has a resolution of 15 
meters and was left out of the scene. The remaining 
bands were stacked to get false-color composite 
(FCC) images in ERDAS IMAGINE 2014 software 
(Qiu & Jensen, 2004; Szuster et al., 2011) The study 
was divided into three time periods: 1994, 2008, and 
2022 (28-year spans). For better  
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Table 2: Satellite data and sources used in this study 

S
at

el
li

te
 

im
ag

es
 

D
at

e 
of

 
ac

q
u

is
it

io
n 

P
at

h 

R
ow

 

R
es

ol
u

ti
on

 

S
ou

rc
es

 

A
p

pl
ic

at
io

n 

Landsat 5 03/02/ 1994 169 055 30m 

U
S

G
S

 
W

eb
si

te
 

L
U

L
C

 
M

ap
 Landsat 5 25/02/ 2008 169 055 30m 

Landsat 8 2/02/ 2022 169 055 30m 

 
interpretation, the image was enhanced by 
displaying it in RGB true color composite (band 3, 
2, 1) and included two infrared channels (4, 5, 3). For 
vegetated and non-vegetated land areas, green 
vegetation, and vegetation discrimination mapping, 
the former band combination bands 3, 2, and 1 were 
used. The latter band combination bands 4, 5, and 3 
were employed for vegetation moisture 
differentiation and NDVI classification. The LULC 
map of the region was validated using high-
resolution images (Google Earth Image). 
Processing and analysis of data 
Image pre-processing and classification 
Image pre-processing is essential to avoid bias 
caused by noise and instrument artifacts (Chander et 
al., 2009; Giri, 2012). To acquire a more accurate 
representation of the images, geometric and 
radiometric corrections were applied during pre-
processing. Moreover, in ERDAS IMAGINE 2014, 
contrast stretching techniques were utilized to 
enhance the visual interpretation of multi-temporal 
satellite images, and aerial photographs were used 
for ground truth verification. Using equalizing 
histograms and masking cloud coverage, the image's 
quality can be enhanced. Image classification is 
important to remote sensing, image analysis, and 
pattern recognition (Figure 2). The technique of 
categorizing pixels in an image is known as image 
classification (Anand, 2017; Urgesa et al., 2016). 
Supervised classification was used to group pixels of 
similar spectral domains into classes. This 
classification approach necessitates the selection of 
training regions as the classification basis. For 
supervised classifications to be successful, the 
computer needs to be trained on the scene area 
beforehand. To reflect a certain land cover class, the 
user defines the original pixels' corresponding 
spectral classifications (Akubia et al., 2020; 
Lillesand et al., 2015). The Supervised Maximum 

Likelihood classifier algorithm classification system 
was employed to complete the classification process. 
Each land cover type is determined by a combination 
of fieldwork and personal experience (Asokan & 
Anitha, 2019; Qiu & Jensen, 2004). The clusters' 
shape, size, and direction are all factors that this 
classifier considers in addition to the cluster centers. 
To do this, the statistical distance was calculated 
using the covariance matrix and mean values of the 
groups. 
To classify and assess accuracy, 150 GPS points (50 
GPS points in each LULC) were collected from the 
field using GPS. The analysis began by using 
signature editor tools to define and collect training 
samples with the same reflectance value, then save 
the signature to begin the classification activity. The 
training sample was used to collect signatures from 
the image for categorization. Each sampled pixel 
was collected with the automated optical inspection 
(AOI) instruments, then classified using the 
signature editor. The satellite images were then 
divided into three categories (Woodland, Grassland, 
and Barren land) (Table 3). 
 
Table 3: Description of LULC classes 
LULC 
classes 

                  Description 

Woodland   Areas are dominantly covered with trees and shrubs.
Grassland Permanently grassed regions, such as those found 

along ridges, steep slopes, and plain areas utilized 
for grazing, are typically both private and 
community. 

Barren land Places with deteriorated grasses, some bare ground 
(rocks), and sporadic rural small villages and farms.

 
Accuracy assessment 
When assessing the value of field data (reference 
point) and classified images, accuracy assessment is 
useful (Congalton & Green, 2019; Elias et al., 2019). 
In the field, these references were generated using 
GPS and Google Earth data. It is very important to 
determine how accurate the referenced point is 
agreed with classified images of the remotely sensed 
data. LULC maps derived from remote sensing 
always contain some sort of errors due to several 
factors from classification technique to method of 
satellite data capture. The most common accuracy 
assessment elements include overall accuracy, 
producer’s accuracy, user’s accuracy, and kappa 
coefficient (Lu et al., 2004). 
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Figure 2: Flow chart of image classification 
 
and the common tool to assess accuracy is the error 
matrix (Congalton & Green, 2019; Qiu & Jensen, 
2004). These accuracy assessment elements were 
computed by using the following formula (Anand, 
2017; Zewude et al., 2022). 
 

𝐏𝐫𝐨𝐝𝐮𝐜𝐞𝐫’𝐬 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐭𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐩𝐢𝐱𝐞𝐥𝐬 𝐢𝐧 𝐚 𝐜𝐚𝐭𝐞𝐠𝐨𝐫𝐲

𝐭𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐢𝐱𝐞𝐥𝐬  𝐝𝐞𝐫𝐢𝐯𝐞𝐝 𝐟𝐫𝐨𝐦 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐝𝐚𝐭𝐚 
 

𝐔𝐬𝐞𝐫’𝐬 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐜𝐨𝐫𝐫𝐞𝐜𝐭 𝐩𝐢𝐱𝐞𝐥𝐬 𝐢𝐧 𝐚 𝐜𝐚𝐭𝐞𝐠𝐨𝐫𝐲

 𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐩𝐢𝐱𝐞𝐥𝐬 𝐝𝐞𝐫𝐢𝐯𝐞𝐝 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐝𝐚𝐭𝐚 
 

𝐎𝐯𝐞𝐫𝐚𝐥𝐥 𝐚𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐒𝐮𝐦 𝐨𝐟 𝐭𝐡𝐞 𝐝𝐢𝐚𝐠𝐨𝐧𝐚𝐥 𝐞𝐥𝐞𝐦𝐞𝐧𝐭𝐬

 𝐓𝐨𝐭𝐚𝐥 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐚𝐜𝐜𝐮𝐫𝐚𝐜𝐲 𝐬𝐢𝐭𝐞𝐬 (𝐩𝐢𝐱𝐞𝐥𝐬)
 

Kappa coefficient (Khat) is a measure of the 
agreement between two maps taking into account all 
elements of the error matrix. It is defined in terms of 
an error matrix as given below: 
 

(𝐊𝐡𝐚𝐭)  =
(𝑵 ∑ 𝒙𝒊𝒊)𝒓

𝒊ୀ𝟏 − (∑  (𝒙𝒊ା ∗
𝒓
𝒊ୀ𝟏  𝒙ା𝒊 )

           𝑵𝟐 −  (∑  (𝒙𝒊ା ∗ 𝒙శ𝒊
))𝒓

𝒊ୀ𝟏

 (5) 

Where; 
r= number of rows in the error matrix 
Xii = number of observations in row i and column i (on the major 

diagonal) 
Xi+ = total observations in row (show as marginal total to right of the 

matrix) 
X+I = total observations in column i (show as marginal total at bottom 

of the matrix) 
N= total number of observations in included in the matrix  

The kappa coefficient or statistics can be applied as 
a measure of how well the remotely sensed 
classification agrees with reference data. A value 
greater than 0.80 represents a strong or good 
classification; a value between 0.40 and 0.80 means 
moderate classification and a value less than 0.40 
represents a poor classification or agreement 
(Anderson, 1976; Firdaus, 2014; Schowengerdt, 
2012). 
 
Change detection matrix 
Pixel-based classified images were used to produce 
change information on the land classes and observed 
changes taking place. Thus, a change matrix was 
produced with the help of ERDAS IMAGINE 2014. 
The land cover map for the three-period series of 
images was analyzed based on LULC types of the 
study area using tables and graphs. To determine the 
magnitude, trend, and rate of LULC changes in the 
watershed, the area comparison analysis was made 
by subtracting the total area of each class of 1994 
from 2008, 2008 from 2022, and 1994 from 2022 
which the result could be positive (increasing) or 
negative (decreasing). The percent and rate of LULC 
change were computed by the following formula 
(Demissie et al., 2017; Hegazy & Kaloop, 2015; 
Yesuph & Dagnew, 2019). 
 

𝐏𝐞𝐫𝐜𝐞𝐧𝐭 𝐨𝐟 𝐜𝐡𝐚𝐧𝐠𝐞 =
𝐗 − 𝐘

𝐘
× 𝟏𝟎𝟎 (6) 

 
 

𝐑𝐚𝐭𝐞 𝐨𝐟 𝐜𝐡𝐚𝐧𝐠𝐞 ൬
𝐡𝐚

𝐲𝐞𝐚𝐫
൰ =

𝐗 − 𝐘

𝐙
 (7) 

 
Where:  
X = Recent area of the land use/land cover in ha,  
Y = Previous area of the land use/land cover in ha and  
Z = Time interval between X and Y in years. 
 
Cross-tabulation matrix was used to differentiate the 
changes of each category at the expense of others 
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and its general structure follows the format displayed 
in Table 4. The rows display the categories of initial 
time, and the columns display the categories of 
subsequent or recent time. Entries on the diagonal 
(that is, Pjj) indicate the amount of LULC category 
which remained persistent in class j between the 
period and are used to calculate the gains and the 
losses of LULC classes while the diagonal entries 
show the size of the area that transitioned from 
category “i” to a different category “j” during the 
time interval (Aldwaik & Pontius Jr, 2012; Yesuph 
& Dagnew, 2019). For ease of reference, the 
equations and notation used to compute various 
components are presented as follows: 
The proportion of the watershed Pi + that is occupied 
by class i, initial time is given by (Eq. 8): 
 

𝐏𝐢+= ෍ 𝐏𝐢𝐣

𝒏

𝒊ୀ𝟏

 
(8) 

 
Where n is the total number of LULC classes. Similarly, the 
proportion of the watershed P+j that is occupied by class j in 
recent times is given by (Eq. 9) 
 

𝐏 + 𝐣 = ෍ 𝐏𝐢𝐣

𝒏

𝒊ୀ𝟏

 
(9) 

 
Similarly, the following equations were used to 
determine the gain, loss, persistence, swap, and total 
change for all four-classified imagery (Braimoh, 
2006; Kindu et al., 2013). 
The Gain (Gij) was calculated through the difference 
between the total value for recent time (P+j) and the 
persistence (Pij), using Eq. 10: 
 

𝐆𝐢𝐣 = 𝐆ା𝐣 − 𝐆𝐣𝐣 (10) 
 

On the other hand, the Loss (Lij) was the difference 
between the total values for the initial time file (Pj+) 
and the persistence, using Eq. 11: 
 

𝐆𝐢𝐣 = 𝐆ା𝐣 − 𝐆𝐣𝐣 (11) 
 

The swapping (Sj) is the exchange between the 
categories i.e. the proportion of a given class that 
changes location, while the total surface area 
remains the same. It denotes concurrent gain (i.e., 
the difference between class i and persistence) and 
loss (i.e., the difference between class j and 

persistence) of a given LULC class. Swap shows the 
fact that a lack of net change does not necessarily 
imply a lack of change in LULC in the watershed. 
Through the use of Eq. 11, it was determined to be 
two times the minimum value of the gains and 
losses. 
 
       𝐒𝐣 = 𝟐 × 𝐌𝐈𝐍(𝐏𝐣ା − 𝐏𝐣𝐣, 𝐏ା𝐣 − 𝐏𝐣𝐣 (11) 

 
The net change shows the definite change between 
the two time periods. The total was determined by 
subtracting the Total row from the Total column. 
The total change for each category (Cj) was the sum 
of net change (Dj) and the swapping   (Sj), or the sum 
of gain and loss (Eq. 12). 
 

      𝐂𝐣 = (𝐃𝐣 + 𝐒𝐣) (12) 
 

If the net change is zero (implying gain is equal to 
loss), then the swap is twice the loss or gain.  
 
Table 4: A 3 × 3 LULC Conversion matrix for 
comparing two maps from different points in time 
  
 Recent time 
Initial 
time   

LULC1 LULC2 LULC3 Total 
initial 

Loss LULC1 

LULC1 P11 P12 P13 P1+ P1+-P11 P11 
LULC2 P21 P22 P23 P2+ P2+-P22 P21 
LULC3 P31 P32 P33 P3+ P3+-P33 P31 
Total 
Recent   

P+1 P+2 P+3 1  P+1 

Gain  P+1-
P11 

P+2-
P22 

P+3-
P33 

  P+1-
P11 

Note: “P” refers to any conversion from one LULC to another and 
the number refers to columns and rows of LULC categories Source: 
Modified from (Adugna et al., 2017; Yesuph & Dagnew, 2019). 

 
The exposure of each LULC class for a change was 
evaluated using the loss to persistence ratio (Lp = 
loss/persistence); gain to persistence ratio (Gp = 
gain/persistence) and net change to persistence ratio 
(Np = net change/persistence) (Randolph, 2004; 
Yesuph & Dagnew, 2019). A given land use or cover 
class has a higher probability of changing to another 
LULC than persisting in its current condition when 
GP and LP values are greater than one (Dibaba et al., 
2020; Talukdar et al., 2020). The land use/cover 
class is more likely to lose area to other LULC 
classes than to gain from them if Np had a negative 
value.Finally, two types of data were produced; 
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namely, three LULC maps, which illustrate the 
changes in a spatial context and various tables which 
exhibit the amount of areas for each LULC category, 
and a cross-tabulation matrix which demonstrates 
the LULC transition from category to a category at 
different study periods. ArcGIS 10.5 was used for 
data analysis, management, spatial referencing, geo-
referencing, and layout for final mapping, and 
ERDAS IMAGINE 2014 for image processing, 
classification, and change detection of the final 
LULC maps as well as the socioeconomic data, also 
analyzed by SPSS v 21. 
NDVI (Normalized difference vegetation index) data  
One of the most widely used indices for computing 
green vegetation is the Normalized Difference 
Vegetation Index (NDVI) (Gandhi et al., 2015; 
Warkineh & Hailemicael, 2021). It is useful for 
identifying vegetation from non-vegetation land 
cover. Areas of barren rock, sand, or snow usually 
show very low NDVI values (for example, 0.1 or 
less). Sparse vegetation such as shrubs and 
grasslands or senescing crops may result in moderate 
NDVI values (approximately 0.2 to 0.5). High NDVI 
values (approximately 0.6 to 0.9) correspond to 
dense vegetation such as that found in temperate and 
tropical forests or crops at their peak growth stage 
(Ghorbani et al., 2012; Helbich, 2019). NDVI values 
were calculated on composite image and used band 
3 (Red) and 4 (Near Infrared) for Landsat 5, and 
band 4 (Red) comes with band 5 (Near Infrared) for 
Landsat 8. NDVI approaching calculation of 
greenness degree of image correlates with vegetation 
crown density. NDVI correlates with chlorophyll 
content and its value is between -1 to 1. NDVI is 
calculated as follows (Costa et al., 2020; Eastman et 
al., 2013; Gandhi et al., 2015; Zaitunah et al., 2018). 
 

𝐍𝐃𝐕𝐈 =
𝐧𝐞𝐚𝐫 𝐢𝐧𝐟𝐫𝐚𝐫𝐞𝐝 − 𝐫𝐞𝐝

𝐧𝐞𝐚𝐫 𝐢𝐧𝐟𝐫𝐚𝐫𝐞𝐝 + 𝐫𝐞𝐝
 (12) 

 
Where  
NIR is the near-infrared reflectance and RED is the red 
reflectance. 
 
In this NDVI analysis, the higher positive values are 
classified as vegetation and values close to zero are 
classified as mixed vegetation. While the negative 
value including zero is classified as barren land 
(Gandhi et al., 2015).  

Results and Discussion 
Land use/land cover distribution (1994 to 2022) 
The distribution of land use/land cover categories in 
the study area was examined from January to March 
using satellite images. These LULC categories were 
divided into three land classes (i.e. Woodland, 
Grassland, and Barren land). The final LULC 
categories (1994 to 2022) showed that woodland was 
the most predominant LULC category in the study 
area followed by grassland and barren land. Focus 
group discussion and key informants' interviews 
showed that the increment of woodland cover could 
be linked with the practice of area enclosure 
restoration activities in the Bilate watershed. Earlier 
studies (e. g. Emiru et al., 2018; Feyisa et al., 2017; 
Warkineh & Hailemicael, 2021) showed that the use 
of area enclosure for vegetation restoration was the 
key contributor to the increase in vegetation 
coverage along the time gradient.The temporal trend 
of LULC change in the last three decades showed a 
magnificent change (Figure 3). In addition to that, 
the rate of woodland change was fast compared to 
the other LULC categories (i.e. Grassland and 
Barren land in the last three decades due to area 
enclosure restoration practiced). In 1994, barren land 
accounted for the largest area coverage (883 ha = 
43.4% of the total area) in the study area. 
Conversely, the woodland cover was the least (419 
ha = 20.6%) (Figure 3 and Table 5). Our findings 
may imply that the study area was severely degraded 
prior to the application of the area enclosure. 
Grassland counted for 730 ha or 35.9% in 1994. 
Moreover, in 2008, the woodland and grassland 
attained the highest coverage, being 770.1 ha (37.9%) 
and 747 ha (36.8%) of the total area, respectively. In 
the same year, barren land covered the smallest share 
(515 ha = 25.3%) of the total area. Our findings 
indicated that after 28 years, the LULC dynamics of the 
study area were significantly changed. In 2022, 
Woodland (816.03 ha = 40.2%) nearly covered twice 
the area of barren land (466.38 ha = 22.9%). Grassland 
(749.7 ha, or 36.9%) occupied the remaining space in 
the research area. Previous studies (e.g. Abera et al., 
2016; Araya, 2014; Feyisa et al., 2017; Solomon et al., 
2022; Yayneshet, 2011) reported the increment of 
woodland and grassland due to the area enclosure 
confirming that it is a promising approach to the 
reverse lost vegetation in a specific area. 
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Figure 3: Land use/land cover map of Bilate watershed 
under different periods 
 
Table 5: Area coverage by LULC classes in the Bilate 
watershed during various periods 
 

LULC 
Class 

1994 2008 2022 
Area 
(ha) 

% of 
total 

Area 
(ha) 

% of 
total 

Area 
(ha) 

% of 
total 

Woodland 419 20.6 770 37.9 816 40.2 

Grassland 730 35.9 747 36.8 750 36.9 

Barren 
Land 

883 43.4 515 25.3 466 23.0 

Total 2032 100 2032 100 2032 100 

 
Table 6: Error matrix classification accuracy 
assessments of images from 1994, 2008, and 2022 
 

LULC Types 
1994 2008 2022 

P (%) U (%) P (%) U (%) P (%) U (%) 
Woodland 92.2 94 95.9 94 96.1 98 
Grassland 90.6 96 93.9 92 91.8 90 

Barren land 97.8 90 92.3 96 94 94 
Overall 

accuracy (%) 93 
 

94  94  
Kappa 

coefficients 0.90 
 

0.91  0.91  
U=user’s accuracies, P=producer’s accuracies 
 
Furthermore, as stated by the elders and confirmed 
in the ground, continuous community based 
integrated watershed management interventions and 
restoration programs appear to make significant 
contributions to the enhancements of the watershed's 
vegetation cover. A restoration trend was also visible 

in the watershed's enclosed areas, which was caused 
by livestock and human interference is avoided. 
However, studies (e.g. Bufebo & Elias, 2021; 
Dingamo et al., 2021; Tewabe & Fentahun, 2020; 
Warkineh & Hailemicael, 2021) showed that the 
major depletion trend was observed degradation of 
woodland and expansion of farmland/agriculture.  
Accuracy assessment 
To assess the classification's accuracy, the LULC 
map was put up against the reference data. As a 
result, overall classification accuracies scored were 
93%, 94%, and 94%, for the classified Landsat 
imageries of 1994, 2008, and 2022, respectively 
(Table 6). The overall accuracy standard of 85% was 
first proposed by (Anderson, 1976), and it is 
currently acknowledged and used as a benchmark in 
map accuracy assessment. Our analysis's total 
accuracy rating is higher than the accepted threshold. 
The outcome indicated that there is a reasonable 
correspondence between the classified image and the 
reality it represents. For the years 1994, 2008, and 
2022, respectively, a kappa coefficient result was 
found to be 0.90, 0.91, and 0.91. The Kappa 
coefficients revealed that the three classified images 
each indicated higher or good classification 
performance or strong agreement, with a Kappa 
value ranging from 0.40 to 0.85 (Anderson, 1976; 
Congalton, 1991; Congalton & Green, 2019; Elias et 
al., 2019; Tewabe & Fentahun, 2020). 
Rate of land use/land cover change   
Our findings show that throughout the entire study 
period (1994–2022), the area of grassland and 
woodland rose while the area of barren land 
significantly decreased (Figure 4 and Table 7). In the 
initial period (1994–2008), the amount of woodland 
vegetation increased by 351.3 ha, or approximately 
25.1 ha/year, whilst the amount of barren land 
decreased by -369.8 ha (-26.3 ha/year). The rate of 
growth of woodland was 45.9 ha (3.3 ha/year) 
between 2008 and 2022. In contrast, both the first 
and second periods saw a significant decrease in the 
barren land. Under this year (2008), area enclosures 
activities were widely practiced in the study area, 
(i.e. there is no degradation, woodland increment 
also not too much visible). Given that the area has 
been protected from human and animal interference, 
woodland was found to show the highest rate of 
change, increasing by 28.4 ha/year, followed by 
grassland at 1.4 ha/year. 
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Table 7: Rate of changes in land use/land cover classes 
(1994 to 2022) 

LULC 
class 

1994 2008 2022 

Area 
(ha) 

Change 
rate (ha 
year-1)  

Area 
(ha) 

Change 
rate  
(ha year-1) 

Are
a 
(ha) 

Change rate 
(ha year-1) 

Woodlan
d 

351  +25.1 45.9  +3.3 
397.
2  

+28.4 

Grasslan
d 

16.6  +1.2 2.8  +0.2 19.4  +1.4 

Barren 
Land 

-369.8  -26.3 -48.5  -3.5 
-
416.
5  

-29.8 

Note. “+” = increased, “-” = decreased the magnitude of 
particular land use/land cover type 
 
During the entire period (1994-2022), the barren 
land class had the highest negative value (-416.5 
ha/year). In general, the results verified a series of 
LULC rate changes in the study area over the past 28 
years (1994-2022). The study indicates that 
woodland has grown significantly over the past 28 
years as a result of the area enclosure restoration 
practices used. Consequently, areas that had before 
been barren had transformed to a larger extent into 
woodland and grassland. These findings are in 
agreement with the studies (e.g. Araya, 2014; 
Mekuria et al., 2020; Tsegay & Meng, 2021) that 
depicted the area enclosure reverses land 
degradation into a productive landscape and 
increases vegetation cover. 
 

Figure 4: The extent and rate of change in the study 
area land use/land cover 
 
From the result, grassland had been relatively high 
persistence value (426.9 ha) in the Bilate watershed 
from 1994 to 2022time period. Similar to how barren 
land displayed the highest values for losses of LULC 
classes and woods the highest values for gains, In 

addition, from 1994 to 2022, most of the additional 
woodland came from grassland and barren 
land (Table 8 and 5). This implies that the area 
within the watershed had the highest overall change. 
Besides, the barren land class was mainly replaced 
by grassland and woodland. Studies (e.g. Dessie & 
Christiansson, 2008; Shiferaw & Singh, 2011; 
Zewude et al., 2022) said that many studies have 
been carried out in the highlands of the country's 
central and northern regions, where land degradation 
and deforestation were already a big concern many 
years ago.In contrast, these studies noted a rise in 
vegetation cover over the preceding three decades as 
a result of area enclosure restoration initiatives 
taking place in the studied area. Similarly, studies 
(e.g. Kasim et al., 2015; Mohammed et al., 2020; 
Tsegay & Meng, 2021) show that the vegetation 
cover was increased due to area enclosure restoration 
activities and community-managed forests. 
Therefore, based on this finding, it can be noted that 
human interventions are what ultimately decide how 
the LULC changes. Studies (e. g, Abera et al., 2016; 
Urgesa et al., 2016) stated that the conservation of 
biological diversity in protected areas was successful 
through the intervention of local communities 
through management activities. Our findings are in 
support of these studies. 
 
Table 8: LULC gain, loss, and absolute net changes in 
ha for Bilate watershed (1994–2022) 

LULC 
Class 

Total  
Persiste

nce 

 
Gain 

 
Loss 

Total 
chang

e 

Absolute 
net 

change 1994 2022 

Woodlan
d 

419 816 377.3 438.8 41.6 480.4 397.2 

Grassland 730 750 426.9 322.8 303.5 626.3 19.3 
Barren 
land 

883 466 406.4 59.9 476.5 536.4 416 

Total 4026 4054 1210.6 821.5 821.6 1643.1 832.5 

 
Persistence and vulnerability of land use/land 
cover dynamics 
The ratio's magnitude always displays the gains to 
persistence ratio, loss to persistence ratio, and net 
change to persistence ratio (which tells how many 
times the LULC types gain/loss than its persistence) 
(Kasim et al., 2015; Zewdie & Csaplovies, 2015). In 
this study, woodland classes have gain to persistence 
ratios (G/P) that are greater than one 
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Figure 5: Map of changes in land use/land cover 
between 1994 and 2022 
 
showing a tendency toward gain rather than loss. The 
loss to persistence (L/P) ratio of barren lands, on the 
other hand, is more than 1, showing that the LULC 
is vulnerable to changes in other land cover groups. 
This implies a higher restoration tendency of the 
watershed and increment of vegetation cover rather 
than degradation. Gain to persistence ratio and loss 
to the persistence of barren land is closer to zero 
value, indicating that the barren land class is 
insignificant compared to its persistence (Table 9).  
 
Table 9: Gain to persistent (G/P), loss to persistent 
(L/P), and net change to persistent (N/P) ratio of land 
use/land cover classes in Bilate watershed (1994–2022) 
LULC 
Class 

Persistence 
(P) 

Gain (G) Loss (L) G/P L/P N/P 

Woodland 377.3 ha 438.8 ha 41.6 ha 1.2 0.1 1.05 
Grassland 426.9 ha 322.8 ha 303.5 ha 0.8 0.7 0.05 
Barren land 406.4 ha 59.9 ha 476.5 ha 0.1 1.2 -1.03 
Total 1210.6 ha 821.5 ha 821.6 ha 2.1 2.0 0.07 

 
When the gain to persistence ratio (G/P) is larger 
than one, the LULC has a higher chance of gaining 
than of persisting. Moreover, the LULC is 
vulnerable to changes in other land cover classes 
since the loss to persistence ratio (L/P) value is 
higher than one (Akubia et al., 2020; Viana & 
Rocha, 2020). Also, grassland LULC classes have 
gain to persistence and loss to persistence values that 
are both lower than one, indicating that they are less 
vulnerable to both of these outcomes. The net change 
to persistence (N/P) is negative barren land, showing 
net loss compared to persistence. The loss of barren 
land may be related to restoration activities due to 

the increase of woodland and grassland in the study 
area. The net change to persistence (N/P) woodland 
area is significantly increased. Grassland also 
experienced a net increase in size, but it also showed 
a comparable loss in the same period. Similarly, 
studies (e.g. Birhane et al., 2017; Mengistu et al., 
2005; Tesfay, 2018) stated that the area of the 
enclosure is currently a meaningful solution for the 
restoration of degraded lands. 
Normalized difference vegetation index (NDVI)      
In this study, it has been observed that the vegetation 
cover was more in 2008 and 2022 with maximum 
NDVI values of 0.42 and 0.63, respectively. This 
indicated that during the period of the study 
restoration activities were increased. The highest 
value shows high vegetation cover. Studies (e.g. 
Abebe et al., 2014; Asmare & Gure, 2019; Yimer et 
al., 2015) reported that area enclosure restoration 
activities promoted vegetation coverage and 
enhanced restoration processes and degraded lands 
were replaced by vegetation. However, the result of 
the NDVI value had 0.11 in 1994 which indicates 
that the area had lower vegetation covers during the 
first decade (Figure 6).  
The area, which is placed in the northern, northwest, 
and northeast parts of the study area resulted in a 
higher NDVI value and the area is woodland area 
enclosure and grassland. This report is also in line 
with (Araya, 2014; Fikadu & Argaw, 2021) who 
reported that area enclosure was one of the reason 
factors for the increase of vegetation coverage and 
the NDVI value increment.  However, barren land 
was placed in the southern part of the study area 
indicating relatively low NDVI values. (Eastman et 
al., 2013; Ya'acob et al., 2014) stated that the value 
of NDVI closed to zero indicates that the area is 
devoid of vegetation or barren land. According to the 
NDVI results from our study, there was a significant 
change in the amount of vegetation cover; the 
amount of high-moderate density vegetation cover 
increased by 40.2 %, while the amount of barren land 
decreased by 22.9 % from the entire area of the 
Bilate watershed. 
 
Land use/land cover change drivers profile of the 
respondent 
In the Bilate watershed, families ranged in size from 
2 to 14 persons per household, or 5 people on 
average. 
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Figure 6: Normalized difference vegetation index 
maps of the study area (1994-2022) 
 
The age range of the respondents was 18 to 69, with 
the majority falling between the ages of 41 and 69 
(70%). Almost participants were married. According 
to their gender distribution, 69% of respondents 
were men and 31% were women. The respondents 
represent 14 % of the sampled households who were 
formally educated and 76% of the sampled 
households' non-educated members. This 
represented a serious limitation to the transfer of 
technology and emphasized the value of perhaps 
inadequate education. The majority of the studied 
household members, three fourth were involved in 
livestock and mixed crop production. Only a small 
percentage of the respondents, however, said they 
were only engaged in farming and related 
occupations besides raising their income. This 
confirmed earlier findings from various regions of 
Ethiopia and showed that crop and livestock output 
accounted for more than half of total household 
income(Asresie et al., 2015; Taffesse et al., 2012). 
 
Perception of local community towards land 
use/land cover change drivers  
The majority of respondents (n=354: 92.19%) 
indicated that the study area's current vegetation 
cover is denser than it was at the start of the previous 
three decades. This implies that respondents 
generally had a positive perception of the study 
area's historical land cover pattern. The community 
is resistant to adapting technologies since 76% of the 
respondents did not have a formal education, as a 

result, the local community's influence on the 
vegetation cover finally leads to a change in LULC. 
This result is also in line with the LULC change 
observed in the remote sensing data interpretation. 
Similarly, studies (e.g. (Asmare & Gure, 2019; 
Gebregziabher & Soltani, 2019; Kassaye Mekonen 
et al., 2022) indicated that people’s perceptions 
about area enclosure play an important role in 
landscape features and land use/land cover 
dynamics.Our findings also revealed that the insight 
of respondents on drivers of land use/land cover 
change showed a significant association with 
sources of income (𝑥ଶ=19.21, df = 2, P < 0.001), 
educational level (𝑥ଶ= 12.01, df = 2, P < 0.01), and 
gender (𝑥ଶ=15.11, df = 1, P < 0.001). While the 
distance from the area enclosure or watershed and 
family sizes were independent or there is not 
associated with the existing drivers of land use/land 
cover change in the community. Studies (e.g. Ali, 
2009; Gebrehiwot et al., 2021; Warkineh & 
Hailemicael, 2021) also revealed a relationship 
between the number of families, distance from the 
protected area, and the land holding size of 
respondents was not significantly influenced by the 
perception of respondents on the drivers of LULC 
change. 
Drivers of LULC change in Bilate watershed  
The FGD participants and key informants in the 
study area engaged in a series of discussions and 
interviews, and the results showed that the 
management system of the area enclosures in the 
watershed is the primary cause of LULCC. The 
management strategy and system worked well; they 
conserved or protected the increase of agricultural 
investment, illegal fuel wood cutting and extraction, 
illegal stone extraction, overgrazing, and expansion 
of illegal and unplanned settlements. Hence the 
LULC change is driven by the expansion of 
agriculture investment, illegal logging and fuel 
wood extraction, illegal stone extraction, 
overgrazing, and expansion of illegal and unplanned 
settlements (Figures 7) (i.e. However, these driving 
forces are not significantly processed in Remote 
sensing imagery, but from local community 
perspective these factors were affected the area 
enclosure, and on the future, it will be expanded, e.g. 
recently some part of area enclosure was transferred 
to the local agricultural investor yet, theses induce 
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factor are not processed by remote sensing but the 
problem exists now a day). Studies (e.g. Kindu et al., 
2015; Sewnet, 2015; Zewude et al., 2022) show that 
the management approach and strategy were 
significantly important for the improved and 
sustained protected areas. Moreover, (Melese, 2016; 
Minale, 2013) stated that the discussion and 
interviews with focus groups discussion and key 
informants indicated that the expansion of illegal 
firewood extraction and the expansion of illegal and 
unplanned settlements were the major drivers of 
LULC change in natural vegetation. On the other 
hand, other studies (e.g. Elias et al., 2019; 
Gebreselassie et al., 2016) reported that population 
increase, poverty, and food insecurity were the main 
forces for LULC change throughout time. Such 
illegal cuttings have also happened as a result of 
t rapid human population demand for large amounts 
of wood for construction. Anthropogenic pressure is 
cited as the primary source of vegetation changes 
(Alemu et al., 2015; Elias et al., 2019; Tesfaye et al., 
2014). (e. g. illegal cutting and fuelwood extraction). 
Overgrazing by cattle inside the enclosure may result 
in the trampling and browsing of seedlings and 
saplings of some plant species, as well as damaging 
the vegetation cover. Similarly, studies (e.g. Feyisa 
et al., 2017; Melese, 2016) stated that the main 
reason for the vegetation change in this central 
Ethiopian Rift valley is due to agricultural activities.  
According to the field observation, most of the 
farmlands were located near Bilate watershed 
 

 
Figure 7: Drivers of LULC changed from 1994 to 2010 
in Bilate watersheds 
 
which allowed the owner of the farm to gain access 
to the nearby area enclosure. Previous studies (e.g. 
Othow et al., 2017; Rahmato, 2011; Zewude et al., 
2022) also indicated that the investors are leasing is 
situated close to national parks, woods, and other 
protected areas. According to the findings of survey 

interviews and focus groups, the fragmentation of 
forests and the establishment of unauthorized 
settlements inside of area enclosures by the local 
population are the other two primary proximal 
causes of vegetation degradation in the Bilate 
watershed. 
 
Conclusion 
LULC affiliated with human demand increases land 
degradation thereby affecting the ecological 
functions of the ecosystems. The ecological and 
socioeconomic conditions were impacted by the 
LULC changes that were seen in the research area. 
Here, the LULC analysis showed that before the area 
enclosure was put into place, there had been 
significant land degradation. However, the final 
LULC change maps showed a progressive change in 
vegetation cover between the study periods. As 
Enclosures in the study area were not fully protected, 
some factors were still driving LULC change. The 
results of FGDs, KIIs, and field observations showed 
that LULC changes and socioeconomic dynamics 
have a strong relationship; as the population 
increases, there is an increased need for agricultural 
land, grazing land, fuel wood, and settlement areas 
to meet the growing demand for food and energy, as 
well as an increased population of livestock. Based 
on our findings the following recommendations are 
forwarded: 
 Establishing and implementing Community-based 

area enclosure restoration activities in the 
watershed.   

 Supporting local initiatives, such as alternative 
income and off-farm economic activity that aim to 
boost household income in the local community. 

 Encourage the adoption of modern stoves for 
effective energy utilization. 

 Implementing effective enforcement of forest 
laws, policies, and awareness raising campaigns.  
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